

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

(Approved by AICTE, New Delhi, permanently affiliated to Anna University, Chennai)

(Accredited by NBA, New Delhi)

B.E.-EEE - III Year/VI - Semester - Students Hand book - Even Semester of 2015 - 2016

This book contains the following:

- Vision and Mission of the College and Department, Program Educational Objectives, Program Specific Outcomes, Program Outcomes.
- 2. Outcome Based Education, Benefits and Significance of accreditation.
- 3. Engineering Ethics.
- 4. Blooms Taxonomy.
- 5. Academic Calendar 2015 2016 (Even semester).
- 6. Class Time Table.
- 7. B.E. EEE Syllabus VI Semester.
- 8. Lecture Schedule, Tutorial, Assignment questions.
- 9. Anna University question papers (Previous years).
- 10. Reminders on Placement and Career Guidance.
- 11. General Reminders.
- 12. All India installed capacity (in MV) of Power station.
- 13. Skill Development & Entrepreneurship program.
- 14. Developing Leadership Skills.
- 15. TANCET- Questions Paper.
- 16. Malpractices & Punishment in AU Examinations.
- 17. Bonafide Certificate & Leave Letter format.

K.L.N. COLLEGE OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Vision and Mission of the College

VISION

To become a Premier Institute of National Repute by Providing Quality Education, Successful Graduation, Potential Employability and Advanced Research & Development through Academic Excellence.

MISSION

To Develop and Make Students Competent Professional in the Dynamic Environment in the field of Engineering, Technology and Management by emphasizing Research, Social Concern and Ethical Values through Quality Education System.

Vision and Mission of the Department

VISION

To become a high standard of excellence in Education, Training and Research in the field of Electrical and Electronics Engineering and allied applications.

MISSION

To produce excellent, innovative and Nationalistic Engineers with Ethical values and to advance in the field of Electrical and Electronics Engineering and allied areas.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

The Educational Objectives of the Electrical and Electronics Engineering (EEE) Programme represent major accomplishments that we expect our graduates to achieve after three to five years of graduation. More specifically our graduates are expected:

PEO1: to excel in industrial or graduate work in Electrical and Electronics Engineering and allied fields

PEO2: to practice their Professions conforming to Ethical Values and Environmentally friendly policies

PEO3: to work in international and multi-disciplinary Environments

PEO4: to successfully adapt to evolving Technologies and stay current with their Professions

PROGRAM SPECIFIC OUTCOMES (PSOs)

Electrical and Electronics Engineering Graduates will be able to:

PSO1: Apply the fundamentals of mathematics, science and engineering knowledge to identify, formulate, design and investigate complex engineering problems of electric circuits, analog and digital electronic circuits, electrical machines and power systems.

PSO2: Apply appropriate techniques and modern Engineering hardware and software tools in power systems to engage in life- long learning and to successfully adapt in multi disciplinary environments.

PSO3: Understand the impact of Professional Engineering solutions in societal and environmental context, commit to professional ethics and communicate effectively.

PROGRAM OUTCOMES (POs)

Electrical and Electronics Engineering Graduates will be able to:

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

OUTCOME BASED EDUCATION (OBE)

In a traditional education system, students are given grades and rankings compared to each other. Content and performance expectations are based primarily on what was taught in the past to students of a given age. The goal of traditional education was to present the knowledge and skills of an older generation to the new generation of students, and to provide students with an environment in which to learn. The process paid little attention (beyond the classroom teacher) to whether or not students learn any of the material.

An outcome is a culminating demonstration of learning; it is what the student should be able to do, at the end of a course/program, in-terms of the knowledge, skill and behavior.

Outcome-based education is an approach to education in which decisions about the curriculum are driven by the exit learning outcomes that the students should display at the end of the course. In outcome-based education, product defines process. Outcome-based education can be summed up as results-oriented thinking and is the opposite of input-based education where the emphasis is on the educational process. Outcome-based education promotes fitness for practice and education for capability.

BENEFITS AND SIGNIFICANCE OF ACCREDITATION

The process of accreditation helps in realizing a number of benefits, such as:

- Helps the Institution to know its strengths, weaknesses and opportunities
- o Initiates Institutions into innovative and modern methods of pedagogy
- Gives Institutions a new sense of direction and identity
- o Provides society with reliable information on quality of education offered
- o Promotes intra and inter-Institutional interactions

Accreditation signifies different things to different stakeholders. These are:

Benefits to Institutions

Accreditation is market-driven and has an international focus. It assesses the characteristics of an Institution and its programmes against a set of criteria established by National Board of Accreditation. NBA's key objective is to contribute to the significant improvement of the Institutions involved in the accreditation process. Accreditation process quantifies the strengths, weaknesses in the processes adopted by the Institution and provides directions and opportunities for future growth. NBA provides a quality seal or label that differentiates the Institutions from its peers at the national level. This leads to a widespread recognition and greater appreciation of the brand name of Institutions and motivates the Institutions to strive for more.

Benefits to Students

Students studying in NBA accredited Institutions can be assured that they will receive education which is a balance between high academic quality and professional relevance and that the needs of the corporate world are well integrated into programmes, activities and processes. It signifies that he has entered the portals of an Institution, which has the essential and desirable features of quality professional education.

Benefits to Employers

Accreditation assures prospective employers that students come from a programme where the content and quality have been evaluated, satisfying established standards. It also signifies that the students passing out have acquired competence based on well established technical inputs.

Benefits to the Public

Accredited status represents the commitment of the programme and the Institution to quality and continuous improvement.

Catalyst for International Accreditations

Due to accreditation from NBA, the Institution's systems and procedures get aligned with the Institution's Mission and Vision. All essential prerequisites for international accreditation are included in the accreditation process of NBA. Therefore, NBA acts as a catalyst for the Institutions planning to acquire International Accreditation.

Benefits to Industry and Infrastructure Providers

It signifies identification of quality of Institutional capabilities, skills and knowledge.

Benefits to Parents

It signifies that their ward goes through a teaching-learning environment as per accepted good practices.

Benefits to Alumni

It reassures alumni that alumni are products of an institute with a higher standing in terms of learning.

Benefits to Country

Accreditation helps in gaining confidence of stakeholders and in giving a strong message that as a country, our technical manpower is of international standards and can be very useful in enhancing the global mobility for our technical manpower.

BLOOM'S TAXONOMY

Definitions of the different levels of thinking skills in Bloom's taxonomy

1. **Remember** – recalling relevant terminology, specific facts, or different procedures related to information and/or course topics. At this level, a student can remember something, but may not really understand it.

2. **Understand** – the ability to grasp the meaning of information (facts, definitions, concepts, etc.) that has been presented.

3. **Apply** – being able to use previously learned information in different situations or in problem solving.

4. **Analyze** – the ability to break information down into its component parts. Analysis also refers to the process of examining information in order to make conclusions regarding cause and effect, interpreting motives, making inferences, or finding evidence to support statements/arguments.

5. **Evaluate** – being able to judge the value of information and/or sources of information based on personal values or opinions.

6. **Create** – the ability to creatively or uniquely apply prior knowledge and/or skills to produce new and original thoughts, ideas, processes, etc. At this level, students are involved in creating their own thoughts an ideas.

REMEMBER	UNDERSTAND	APPLY	ANALYZE	EVALUATE	CREATE
Count	Associate	Add	Analyze	Appraise	Categorize
Define	Compute	Apply	Arrange	Assess	Combine
Describe	Convert	Calculate	Breakdown	Compare	Compile
Draw	Defend	Change	Combine	Conclude	Compose
Identify	Discuss	Classify	Design	Contrast	Create
Label	Distinguish	Complete	Detect	Criticize	Drive
List	Estimate	Compute	Develop	Critique	Design
Match	Explain	Demonstrate	Diagram	Determine	Devise
Name	Extend	Discover	Differentiate	Grade	Explain
Outline	Extrapolate	Divide	Discriminate	Interpret	Generate
Point	Generalize	Examine	Illustrate	Judge	Group
Quote	Give	Graph	Infer	Justify	Integrate
Read	examples	Interpolate	Outline	Measure	Modify
Recall	Infer	Manipulate	Point out	Rank	Order
Recite	Paraphrase	Modify	Relate	Rate	Organize
Recognize	Predict	Operate	Select	Support	Plan
Record	Rewrite	Prepare	Separate	Test	Prescribe
Repeat	Summarize	Produce	Subdivide		Propose
Reproduce		Show	Utilize		Rearrange
Select		Solve			Reconstruct
State Write		Subtract			Related
		Translate			Reorganize
		Use			Revise
					Rewrite
					Summarize
					Transform
					Specify

List of Action Words Related to Critical Thinking Skills

ENGINEERING ETHICS

Engineering Ethics is the set of rules and guidelines that engineers adhere to as a moral obligation to their profession and to the world. Engineering is a professional career that impact lives. When ethics is not followed, disaster often occurs; these disasters not only include huge monetary costs and environmental impacts, but also often result in the loss of human life. Engineering Ethics applies to every engineer and is very important.

The National Society of Professional Engineers (NSPE) decides the overall standards and codes of ethics for all the engineering professions. The Preamble of the NSPE *Code of Conduct for Engineers* (2007) states:

"Engineers shall at all times recognize that their primary obligation is to protect the safety, health, property, and welfare of the public. If their professional judgment is overruled under circumstances where the safety, health, property, or welfare of the public are endangered, they shall notify their employer or client and such other authority as may be appropriate."

Electrical Engineering Ethics

Electrical Engineering is a type of engineering profession that deals with the creation of better electronics. Since our society is heading towards an era of technology, where all members of society will be affected, it is especially important for electrical engineers to follow a code of engineering ethics. For electrical engineers, an important set of guidelines is the *Electrical Engineering Code of Ethics*, published by IEEE.

IEEE code of ethics

We, the members of the IEEE, in recognition of the importance of our technologies in affecting the quality of life throughout the world, and in accepting a personal obligation to our profession, its members and the communities we serve, do hereby commit ourselves to the highest ethical and professional conduct and agree:

- 1. to accept responsibility in making decisions consistent with the safety, health, and welfare of the public, and to disclose promptly factors that might endanger the public or the environment;
- 2. to avoid real or perceived conflicts of interest whenever possible, and to disclose them to affected parties when they do exist;
- 3. to be honest and realistic in stating claims or estimates based on available data;
- 4. to reject bribery in all its forms;
- 5. to improve the understanding of technology; its appropriate application, and potential consequences;
- 6. to maintain and improve our technical competence and to undertake technological tasks for others only if qualified by training or experience, or after full disclosure of pertinent limitations;
- 7. to seek, accept, and offer honest criticism of technical work, to acknowledge and correct errors, and to credit properly the contributions of others;

- 8. to treat fairly all persons and to not engage in acts of discrimination based on race, religion, gender, disability, age, national origin, sexual orientation, gender identity, or gender expression;
- 9. to avoid injuring others, their property, reputation, or employment by false or malicious action;
- 10. to assist colleagues and co-workers in their professional development and to support them in following this code of ethics.

Engineering Ethics in College/Education

The main engineering ethics problem that college students are face with is academic integrity. Academic integrity can show itself in the form of cheating by copying someone's work, intentional cheating, plagiarism, and/or self-plagiarism.

However, professional ethics is something that can be learned even when it conflicts with personal ethics, as for example, a situation where you are personally okay with building a product that can harm the environment, yet save lives. You can learn professional ethics and realize that something that is harmful to the environment is not okay. Ethics codes can even help you see the bigger picture. For example, in the previous scenario, these codes can help you re-evaluate your ethics and realize that something that is harmful to the environment is harmful to the environment will eventually be harmful to the people around you and yourself.

Engineering Ethics in the Professional World

In the professional world, ethical engineering problems come up in many cases. One of these includes the case of a professional using someone else's work that is published in the widespread market of publication. Another is the case of a professional using someone else's work that is not published yet and stealing their idea. Engineers who have good engineering ethics often have a good sense of the value of life. They don't hesitate to admit that they made a mistake because they know that the cost of not owning up to your mistakes can have disastrous consequences. It might even cost a human life.

Engineering Ethics in Companies

Not only do individual engineers have to be conscious of engineering ethics, but also companies. Companies have to be aware of their Corporate Social Responsibility and Environmental Responsibility. Corporate Social Responsibility is a company's responsibility to give back to the community that they profit from and to behave ethically so that both they and their community can benefit. Environmental Responsibility is a business's initiative to leave the environment (where it is taking its resources from) the same, if not better, that it is found it.

ANNA UNIVERSITY- CHENNAI ACADEMIC CALENDER - Even Semester of 2015-2016

February 2016 – May 2016 (EVEN SEMESTER) SESSION OF THE ACADEMIC YEAR 2015 – 2016

UG & PG Degree Programmes offered in Affiliated Engineering Colleges

SI. No.	Programme	Semester	Commencement of Classes	Last working day	Commencement of End Semester Examinations	
1.	B.E. / B.Tech.(Full-Time)	VIII	30.01.2016	30.04.2016	02.05.2016	
2.	B.E. / B.Tech.(Full-Time)	II,IV,VI				
3.	B.E. (Part-Time)	III,V,VII				
4.	B.Arch. (Full-Time)	II,IV,VI,VIII,X				
5.	M.E. / M.Tech./ M.Arch.(FT/PT)	II,IV,VI	01.02.2016 07.05.2016	07 05 2016	09.05.2016	
6.	M.C.A. (Full-Time)	II,IV,VI		07.03.2010	00.00.2010	
7.	M.B.A. (FT/PT)	II,IV,VI				
8.	M.Sc (5 Yrs-Integrated)	II,IV,VI,VIII,X				
9.	M.Sc.(2 Yrs)	II,IV				

RE - OPENING DAY FOR THE NEXT SEMESTER: 04.07.2016 (Monday)

K.L.N. COLLEGE OF ENGINEERING, POTTAPALAYAM POST - 630 612 ACADEMIC CALENDER - Even Semester of 2015-2016. IV, VI & VIII SEMESTER UG & II, IV&VI SEMESTERPG DEGREE COURSES

S.No.	Date (Day)	Programme / Events	Day
	2 are (2 aj)	JANUARY '2016'	2 49
1.	01.01.16 (Friday)	NEW YEAR - HOLIDAY- FOUNDERS DAY	-
2.	15.01.16 (Friday)	PONGAL - HOLIDAY	
3.	16.01.16 (Saturday)	THIRUVALLUVAR THINAM- HOLIDAY	-
4.	17.01.16(Sunday)	ULAVAR THIRUNAAL - HOLIDAY	-
5.	26.01.16(Tuesday)	REPUBLIC DAY - HOLIDAY	-
		Commencement of classes- II,IV,VI &VIII -B.E./B. Tech	01
6.	28.01.16(Thursday)	(except EEE,ECE & /AUE- VIII semester)	01
7.	30.01.16(Saturday)	Commencement of classes- VIII semester (EEE, ECE & AUE)	03
7.	50.01.10(Saturday)	Monday order	03
		FEBRUARY '2016'	
		Commencement of classes-II ,IV & VI sem -M.E /M.B.A / M.C.A	
0		Class committee meeting –I (1-5 Feb 2016)	0.4
8.	01.02.16(Monday)	Students counselor meeting –I	04
		(1-5 Feb 2016)	
9.	15.02.16(Mon day)	Class Test -I (15th Feb -20th Feb 2016)	15
10.	29.02.16(Monday)	CIT $-1 - 29^{\text{th}}$ Feb -7^{th} March 2016	27
		MARCH '2016'	
11		Friday order	25
11.	12.03.16 (Saturday)	18 th Graduation Day- Tentative	37
12.	18.03.16(Friday)	Class Test –II - 18^{th} – 24^{th} March 2016	42
13.	24.03.16(Thursday)	Sports Day - Tentative	47
14.	25.03.16(Friday)	GOOD FRIDAY – HOLIDAY	-
15	2(021((Saturday)	Friday order	48
15.	26.03.16(Saturday)	Parents – Teachers Meeting	48
		APRIL '2016'	
		International Conference on	
16.	06.04.16(Wednesday)	"Innovations in Engineering and Technology" – 6th & 7th April 2016	56
		CIT-2 – 6 th -13 th April 2016	
17.	08.04.16(Friday)	TELUGU NEW YEAR – HOLIDAY	-
18.	14.04.16(Thursdox)	TAMIL PUTTHANDU &	
10.	14.04.16(Thursday)	Dr.AMBEDKAR'S BIRTHDAY-HOLIDAY	-

K.L.N.C.E./EEE/HAND BOOK/2015-2016/EVEN/VI SEM/RJPP.8

19.	15.04.16(Friday)	Model Practical Examinations $(15^{th} - 20^{th} \text{ April})$	62
20.	16.04.16 (Saturday) Tuesday order 22 nd College Annual Day		63
21.	19.04.16(Tuesday)	MAHAVEER'S JEYANTHI – HOLIDAY	-
22.	20.04.16(Wednesday)	Students Feedback on faculty& College facility Course Outcome Survey- 20 th -23 rd April	65
23.	21.04.16(Thursday)	Class Test -3 – 21 st – 23 rd April 2016	66
24.	25.04.16(Monday)	Anna University Practical Examinations (25 th – 30 th April 2016) – Tentative	69
25.	30.04.16(Saturday)	Last working Day-VIII- Semester – B.E / B.Tech.,	74
		MAY '2016'	
26.	01.05.16(Sunday)	MAY DAY – HOLIDAY	-
27.	02.05.16(Monday)	Commencement of Anna University – Theory Examinations- VIII semester –B.E / B.Tech.,	75
28.	07.05.16(Saturday)	Last working Day-II, IV& VI sem- all UG & PG courses	80
29.	09.05.16(Monday)	Commencement of Anna University –Theory Examinations- II,IV& VI sem -all UG & PG courses	-
30.	10.05.16(Tuesday)	Graduate Exit Survey -2016 passed out- survey to be completed on or before 31 st May 2016	-
31.	11.05.16(Wednesday)	Collection of Alumni, Employer Survey – survey to be completed on or before 10 th June 2016.	-

Commencement of classes : III, V, VII Semester – B.E./B.Tech., MCA, M.E, MBA : 04th July 2016

K,L.N.COLLEGE OF ENGINEERING, POTTAPALAYAM-630612. Department of Electrical and Electronics Engineering CLASS WISE TIME TABLE -2015-2016 (EVEN)

Year/Sem/Sec : III / VI / A

Faculty In-charge : J.Merlin

											-	0		
	TIME	09.00	09.50		10.55-	11.4	5-		0	1.15-	02.05-	02	.55-	
	DAY		_		11.45	12.3				2.05	02.55		3.45	
	2922		10.40		11.17	12.			U	2.05	02.55			
		09.50	10.40	B		DO	-	_					D	
	МОЛ		ES	Ś	SSD	PS'		L			AB / MPM		в	
		PKA	RJR	R	RJPP	AN		v			MBL / JM,		יור	
	TUE	PST	PSOC	Æ	DEM	DE			1	ES	SSD			
		AM	JM	E	SMK	SM		N		RJR	RJPP		KA	
	WED	, ES RJR	PST AM	Я	PSOC	PK		С			AB / MPM(MBL / JM,		в	
		DEOC	SSD	az	JM CE	PK PSC		ŀ	D.	EM(T)	PST		ES	
	THU	JM	RJPP	K	Се РКА	JN		Н		K,RJR	AM		JR	
		SSD	CE	-	DEM	PSC		-	SIVI	IN, NJ N	PSTS	П	JK	
	FRI	RJPP	PKA		SMK	JN					RJR, VS			
ć	Noar Som	Sec : III / 9			JIVIIX	JIV	1			Faculto	In-charge :	M In		144
					10 55	11	A Г							
	TIME		09.50		10.55-		45-			01.15-	02.05-		.55-	
	DAY	-	—		11.45	12	.35			02.05	02.55	03	3.45	
		09.50	10.40											
	1/00/	- PSOC	PST	B	DEM	DI	EM	1	c. 🗆	CE	ES	S	SD	
	MON	CMS	AM	P	SMK	SN	ΛK			PKA	ΤG	M	JM	
	atta dar	ES	CE	R	PSOC	P	ST	1	דע	PED I	LAB / MPM	IC LA	AB	
	TUE	TG	PKA	E	CMS	A	М	9	v L	MJM	1, NVRV / '	TG, I	EJ	
	area	CE	SSD	a	DEM	DEN	(T)			ES	CE	PS	OC	
	WED	PKA	MJM	Я	SMK	SMK	,MBL	(2	ΤG	PKA	C	MS	
	THU	PST	ES	K	SSD	PS	OC	1	ч	PED I	LAB / MPM	IC LA	AB	
	·INU	AM	TG	Ŭ	MJM	Cì	MS	5	2	MJN	1, NVRV / '	TG, I	EJ	
	TOI	SSD	PSOC	-	PST	C	Œ				PSTS			
	FRI	MJM	CMS		AM	Pŀ	КA				PKA, CMS	S		
	Year/	/Sem/Sec : I	II/VI/C								Faculty In	ı-char	ae :	
E.I	,	/Sem/Sec : I	II/VI/C					-			Faculty In	ı-charş	ge :	
	'eyasri		· ·		10 55-	11	45-			01 15				٦
	eyasri TIME	/Sem/Sec : 1 09.00	09.50 -		10.55-		.45-			01.15	- 02.05	i- (02.55-	1
	'eyasri	09.00	· ·		10.55- 11.45		.45- 2.35			01.15 02.0	- 02.05	i- (]
	eyasri TIME	09.00 - 09.50	09.50 - 10.40		11.45	1	2.35			02.0	- 02.05 5 02.55	i- (02.55- 03.45	
	leyasri TIME DAY	09.00 - 09.50 SSD	09.50 - 10.40 ES	В	11.45 DEM		2.35 DEM		Ĺ	02.0 PSOC	- 02.05 5 02.55 C PST	5	02.55- 03.45 CE	
	eyasri TIME	09.00 - 09.50 SSD SV	09.50 - 10.40 ES SM		11.45 DEM SMK	11 1 5	2.35 DEM SMK			02.0 PSOC KG	- 02.05 5 02.55 C PST CMS	5	02.55- 03.45 CE EJ	
	Ieyasri TIME DAY MON	09.00 - 09.50 SSD SV CE	09.50 - 10.40 ES SM PED LAB	R	11.45 DEM SMK / MP	1 I S MC I	2.35 DEM MK AB		L U	02.0 PSOC KG SSD	C PST C PST C PST	5	02.55- 03.45 CE EJ ES	
	leyasri TIME DAY	O9.00 - 09.50 SSD SV CE EJ	09.50 - 10.40 ES SM PED LAB MBL,MJM	R	11.45 DEM SMK / MP / 1	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.35 DEM SMK AB			O2.0 PSOC KG SSD SV	- 02.05 5 02.55 C PST CMS PSOC KG	5	02.55- 03.45 CE EJ ES SM	
	TIME DAY MON TUE	09.00 - 09.50 SSD SV CE EJ PST	09.50 - 10.40 ES SM PED LAB MBL,MJM CE	R E	11.45 DEM SMK / MP / 1 DEM	11 12 14 15 15 15 15 15 15 15 15 15 15 15 15 15	2.35 DEM SMK AB G EM(T)		U N	O2.O PSOC KG SSD SV SSD	C PST C PST C PST CMS PSOC KG ES	5	02.55- 03.45 CE EJ ES SM CE	-
	Ieyasri TIME DAY MON	O9.00 - O9.50 SSD SV CE EJ PST CMS	09.50 – 10.40 ES SM PED LAB MBL,MJM CE EJ	R E A	11.45 DEM SMK / MP / 1 DEM SMK	EJ, TC SMC I SMC I SM	2.35 DEM MK AB G EM(T) K,RJR		U	O2.0 PSOC KG SSD SV	C PST C PST CMS PSOC KG ES SM	5	02.55- 03.45 CE EJ ES SM	
	reyasri TIME DAY MON TUE WED	O9.00 - O9.50 SSD SV CE EJ PST CMS PSOC	09.50 – 10.40 ES SM PED LAB MBL,MJM CE EJ PST	R E	11.45 DEM SMK / MP / 1 DEM SMK SSD	L S MC L EJ, TC SM SM P	2.35 DEM SMK AB S EM(T) K,RJR SOC		U N	O2.O PSOC KG SSD SV SSD	- 02.05 5 02.55 C PST CMS PSOC KG ES SM PSTS	5 (5)	02.55- 03.45 CE EJ ES SM CE	
	TIME DAY MON TUE	09.00 - 09.50 SSD SV СЕ ЕЈ PST СМS PSOC КG	09.50 - 10.40 ES SM PED LAB MBL,MJM CE EJ PST CMS	R E A	11.45 DEM SMK / MP / 1 DEM SMK SSD SV	I: S MC I EJ, TC SM P	2.35 DEM SMK AB C EM(T) K,RJR SOC KG		U N C	O2.O PSOC KG SSD SV SSD SV	- 02.05 5 02.55 C PST CMS PSOC KG ES SM PSTS PKA, C	5 (5)	02.55- 03.45 CE EJ ES SM CE EJ	
	TIME DAY MON TUE WED THU	09.00 – 09.50 SSD SV СЕ ЕЈ РST СМЅ РSOC КС КС	09.50 - 10.40 ES SM PED LAB MBL,MJM CE EJ PST CMS CE	R E A	11.45 DEM SMK / MP / 1 DEM SMK SSD SV PSOC	II S MC I EJ, TC SM P	2.35 DEM MK AB G EM(T) K,RJR SOC KG PST		U N C	O2.O PSOC KG SSD SV SSD SV PEL	- 02.05 5 02.55 С РSТ СМS РSОС КС ЕS SM РSTS РКА, С О LAB / MI	5- (5 MS PMC	02.55- 03.45 CE EJ ES SM CE EJ LAB	-
	reyasri TIME DAY MON TUE WED	09.00 - 09.50 SSD SV СЕ ЕЈ PST СМS PSOC КG	09.50 - 10.40 ES SM PED LAB MBL,MJM CE EJ PST CMS	R E A	11.45 DEM SMK / MP / 1 DEM SMK SSD SV	II S MC I EJ, TC SM P	2.35 DEM SMK AB C EM(T) K,RJR SOC KG		U N C	O2.O PSOC KG SSD SV SSD SV PEL	- 02.05 5 02.55 C PST CMS PSOC KG ES SM PSTS PKA, C	5- (5 MS PMC	02.55- 03.45 CE EJ ES SM CE EJ LAB	
	TIME DAY MON TUE WED THU	09.00 – 09.50 SSD SV СЕ ЕЈ РST СМЅ РSOC КС КС	09.50 - 10.40 ES SM PED LAB MBL,MJM CE EJ PST CMS CE	R E A	11.45 DEM SMK / MP / 1 DEM SMK SSD SV PSOC KG	II S MC I EJ, TC SM P P	2.35 DEM MK AB G EM(T) K,RJR SOC KG PST		U N C	O2.O PSOC KG SSD SV SSD SV PEL	 C 02.05 O2.55 O2.55 C PST CMS PSOC KG ES SM PSTS PKA, C D LAB / MI MJM / 	5 (5 5) 5) 5) 5) 5) 5) 5) 5) 5) 5	02.55- 03.45 CE EJ ES SM CE EJ LAB	
SUB	TIME DAY MON TUE WED THU	09.00 – 09.50 SSD SV СЕ ЕЈ РST СМЅ РSOC КС КС	09.50 - 10.40 ES SM PED LAB MBL,MJM CE EJ PST CMS CE EJ	R E A	11.45 DEM SMK / MP / 1 DEM SMK SSD SV PSOC KG	I: S MC I EJ, TC SM P I I C VIATI	2.35 DEM MK AB G EM(T) K,RJR SOC KG PST		U N С H	O2.O PSOC KG SSD SV SSD SV PEL	- 02.05 5 02.55 С РSТ СМS РSОС КС ЕS SM РSTS РКА, С О LAB / MI	5 (5 5) 5) 5) 5) 5) 5) 5) 5) 5) 5	02.55- 03.45 CE EJ ES SM CE EJ LAB TG	
SUB CODE	eyasri TIME DAY MON TUE WED THU FRI	09.00 – 09.50 SSD SV СЕ ЕЈ РST СМЅ РSOC КС ВSM	O9.50 – 10.40 ES SM PED LAB MBL,MJM CE EJ PST CMS CE EJ	R E A	11.45 DEM SMK / MP / 1 DEM SMK SOC KG ABBREY ON	II S MC I EJ, TC SM SM P I C VIATI	2.35 DEM SMK AB C EM(T) K,RJR SOC KG PST CMS		U N C H	O2.O PSOC KG SSD SV SSD SV PEI N	 O2.05 O2.55 O2.55 C PST CMS PSOC KG ES SM PSTS PKA, C D LAB / MI MJM / STAFF NAM B – sec 	5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (02.55- 03.45 CE EJ ES SM CE EJ IAB IG	
SUB CODE EC6651	eyasri TIME DAY MON TUE WED THU FRI Communi	O9.OO - O9.5O SSD SV CE EJ PST CMS PSOC KG ES SM SUBJECT	O9.50 – 10.40 ES SM PED LAB MBL,MJM CE EJ PST CMS CE EJ	R E A	11.45 DEM SMK / MP / I DEM SMK SMK SSD SV PSOC KG ABBREY ON CE	II S MC I EJ, TC SM SM I SM	2.35 DEM SMK AB C EM(T) K,RJR SOC KG PST CMS	A -	U N C H - Sec	O2.O PSOC KG SSD SV SSD SV PEI N r	 O2.05 O2.55 O2.55 C PST CMS PSOC KG PSOC KG SM PSTS PKA, C D LAB / MI ABL, MJM / STAFF NAM B – sec P.K. Arunkum 	5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (02.55- 03.45 CE EJ ES SM CE EJ ILAB TG	i
SUB CODE EC6651 EE6601	eyasri TIME DAY MON TUE WED THU FRJ Communi Solid State	O9.OO - O9.50 SSD SV CE EJ PST CMS PSOC KG ES SM SUBJEC cation Engine e Drives	O9.50 – 10.40 ES SM PED LAB MBL,MJM CE EJ PST CMS CE EJ	R E A	11.45 DEM SMK / MP / I DEM SMK SMK SSD SV PSOC KG ABBREY ON CE SSI	II S MC I EJ, TC SM SM P SM I SM	2.35 DEM SMK AB C EM(T) K,RJR SOC KG PST CMS	A -	U N C H - Sec kuma di pra	O2.O PSOC KG SSD SV SSD SV PEI N r	- O2.05 05 O2.55 05 OS 05 PSOC KG ES SM PSTS PKA, C OLAB / MI 1BL, MJM / STAFF NAM B - sec P.K. Arunkun M.Jeyamuruga M.Jeyamuruga	5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (O2.55- O3.45 CE EJ ES SM CE EJ ILAB TG CE E.Jeyasr Dr.S.Ver	i nkatesan
SUB CODE EC6651	eyasri TIME DAY MON IUE WED THU FRJ Communia Solid State Embedded	O9.OO - O9.50 SSD SV CE EJ PST CMS PSOC KG ES SM SUBJEC cation Engine e Drives	09.50 - 10.40 ES SM PED LAB MBL,МЈМ CE EJ PST CMS CE EJ EJ F NAME	R E A	11.45 DEM SMK / MP / I DEM SMK SMK SSD SV PSOC KG ABBREY ON CE	II S MC I EJ, TC SM P SM I S M VIATI	2.35 DEM SMK AB C EM(T) K,RJR SOC KG PST CMS	A - arunl pano aroh	U N C H - Sec kuma di pra	O2.O PSOC KG SSD SV SSD SV PEI N r	 O2.05 O2.55 O2.55 C PST CMS PSOC KG PSOC KG SM PSTS PKA, C D LAB / MI ABL, MJM / STAFF NAM B – sec P.K. Arunkum 	5 (5) 5 (5) 5 (7) 5 (7)	02.55- 03.45 CE EJ ES SM CE EJ ILAB TG	i nkatesan naran
SUB CODE EC6651 EE6601 EE6602 EE6603 EE6604	eyasri TIME DAY MON TUE WED THU FRJ Communit Solid State Embedded Power Sys Design of	O9.00 - O9.50 SSD SV CE EJ PST CMS PSOC KG ES SM SUBJEC cation Engine e Drives 1 Systems stem Operation Electrical Ma	O9.50 – 10.40 ES SM PED LAB MBL,MJM CE EJ PST CMS CE EJ F NAME ering	R E A	11.45 DEM SMK / MP / 1 DEM SMK SSD SV PSOC KG CE SSI CE SSI DEM SSD SV	II S PMC I S MC I S M S M I S I S	2.35 DEM MK AB C EM(T) K,RJR SOC KG PST CMS P.K. Ai R.Jeya R. Jeya R. Jeya J.Merli Dr.S.M	A - rrunl pano aroh in I.Ka	U N C H - Sec	O2.O PSOC KG SSD SV SSD SV PEI N r thap	C O2.05 O2.55 O2.55 C PST CMS PSOC KG ES SM PSTS PKA, C D LAB / MI 1BL, MJM / STAFF NAM B – sec P.K. Arunkum M.Jeyamurugi T.Gopu C.Muthamilse Dr.S.M.Kanna	5 (5 5) 5) 5) 5) 5) 5) 5) 5) 5) 5	O2.55- O3.45 CE EJ ES SM CE EJ LAB TG LAB TG	i nkatesan naran anambal Kannan
SUB CODE EC6651 EE6601 EE6602 EE6603 EE6604 EE6002	eyasri TIME DAY MON TUE WED THU FRJ Commune Solid State Embedded Power Sys Design of Power Sys	O9.00 - O9.50 SSD SV CE EJ PST CMS PSOC KG ES SM SUBJEC: cation Engine e Drives I Systems stem Operatio Electrical Ma stem Transien	O9.50 – 10.40 ES SM PED LAB MBL,MJM CE EJ PST CMS CE EJ F NAME ering	Я. Е Я К.	11.45DEM SMKJEM SMKDEM SMKSSD SVPSOC KGCE SSICE SSISSICE SSIPSOC PSOC SSIPSOC SSIPSOC SSIPSOC SSIPSOC SSIPSOC SSISSIPSOC SSI<	II S PMC I EJ, TC J SM P SM I SM I SM I SM I SM I SM I SM I	2.35 DEM MK AB EM(T) K,RJR EM(T) K,RJR SOC KG PST CMS P.K. A R.Jeya R. Jeya R. Jeya J.Merli Dr.S.M A.Mari	A - runl pano aroh in I.Kat imu	U N C H - Sec kuma di pra ini nnan thu	O2.O PSOC KG SSD SV SSD SV PEI N r thap	C O2.05 O2.55 O2.55 C PST CMS PSOC KG ES SM PSTS PKA, C D LAB / MI 1BL, MJM / STAFF NAM B – sec P.K. Arunkum M.Jeyamurug T.Gopu C.Muthamilse Dr.S.M.Kanna A.Marimuthu	5 (5) C) MS PMC / EJ, (E) nar an	O2.55- O3.45 CE EJ ES SM CE EJ LAB TG C E.Jeyasr Dr.S.Vei S.Manof Dr.S.Vei S.Manof Dr.S.Vei S.Manof	i nkatesan naran anambal Kannan milselvi
SUB CODE EC6651 EE6601 EE6602 EE6603 EE6604	eyasri TIME DAY MON TUE WED THU FRJ Communio Solid State Embedded Power Sys Design of Power Sys Power Ele	O9.00 - O9.50 SSD SV CE EJ PST CMS PSOC KG ES SM SUBJEC cation Engine e Drives 1 Systems stem Operatio Electrical Ma stem Transien ctronics and I	O9.50 – 10.40 ES SM PED LAB MBL,MJM CE EJ PST CMS CE EJ F NAME ering	R E A K	11.45 DEM SMK / MP / 1 DEM SMK SSD SV PSOC KG CE SSI CE SSI DEM SSD SV	II S PMC I EJ, TC J SM P SM I SM I SM I SM I SM I SM I SM I	2.35 DEM MK AB C EM(T) K,RJR SOC KG PST CMS P.K. Ai R.Jeya R. Jeya R. Jeya J.Merli Dr.S.M	A - runl pano aroh in I.Kat imu	U N C H - Sec kuma di pra ini nnan thu	O2.O PSOC KG SSD SV SSD SV PEI N r thap	C O2.05 O2.55 O2.55 C PST CMS PSOC KG ES SM PSTS PKA, C D LAB / MI 1BL, MJM / STAFF NAM B – sec P.K. Arunkum M.Jeyamurugi T.Gopu C.Muthamilse Dr.S.M.Kanna	5 (5) C) MS PMC / EJ, (E) nar an	O2.55- O3.45 CE EJ ES SM CE EJ LAB TG C E.Jeyasr Dr.S.Vei S.Manof Dr.S.Vei S.Manof Dr.S.Vei S.Manof	i nkatesan naran anambal Kannan
SUB CODE EC6651 EE6601 EE6602 EE6603 EE6604 EE6002	eyasri TIME DAY MON TUE WED THU FRJ Communia Solid State Embedded Power Sys Design of Power Sys Power Sys Power Ele Microproce	O9.00 - O9.50 SSD SV CE EJ PST CMS PSOC KG ES SM SUBJEC cation Engine e Drives SM SUBJEC cation Engine e Drives stem Operatio Electrical Ma stem Transien ctronics and I ressors and M	O9.50 – 10.40 ES SM PED LAB MBL,MJM CE EJ PST CMS CE EJ F NAME ering	R E A K	11.45DEM SMKJEM SMKDEM SMKSSD SVPSOC KGCE SSICE SSISSICE SSIPSOC PSOC SSIPSOC SSIPSOC SSIPSOC SSIPSOC SSIPSOC SSISSIPSOC SSI<	II S MC I EJ, TC SM SM I SM SM I SM I SM I SM I SM I SM	2.35 DEM MK AB EM(T) K,RJR EM(T) K,RJR SOC KG PST CMS P.K. A R.Jeya R. Jeya R. Jeya J.Merli Dr.S.M A.Mari	A - runl pand aroh in I.Ka imu	U N C H - Sec kuma di pra ini nnan thu	O2.O PSOC KG SSD SV SSD SV PEI N r thap	C O2.05 O2.55 O2.55 C PST CMS PSOC KG ES SM PSTS PKA, C D LAB / MI 1BL, MJM / STAFF NAM B – sec P.K. Arunkum M.Jeyamurug T.Gopu C.Muthamilse Dr.S.M.Kanna A.Marimuthu	5 (5) C) MS PMC / EJ, (E) nar an	O2.55- O3.45 CE EJ ES SM CE EJ LAB TG C E.Jeyasr Dr.S.Vei S.Manof Dr.S.Vei S.Manof Dr.S.Vei S.Manof	i nkatesan naran anambal Kannan milselvi ani lakshmi
SUB CODE EC6651 EE6601 EE6602 EE6604 EE6002 EE6611	eyasri TIME DAY MON IUE WED THU FRJ Communit Solid State Embedded Power Sys Design of Power Sys Power Sys Power Ele Microproc Laboratory	O9.00 - O9.50 SSD SV CE EJ PST CMS PSOC KG ES SM SUBJEC: cation Engine e Drives 1 Systems stem Operatio: Electrical Ma stem Transien ctronics and I ressors and Ma y	O9.50 – 10.40 ES SM PED LAB MBL,MJM CE EJ PST CMS CE EJ F NAME ering	R E A K	11.45 DEM SMK / MP / I DEM SMK SMK SSD SV PSOC KG ABBREY ON CE SSI SSI PSOC KG PSOC KG PSOC PSOC KG PSOC PSO ON PSO PED	II S PMC I S PMC I S M D S M T A B L A B	2.35 DEM MK AB EM(T) K,RJR SOC KG PST CMS PST CMS P.K. Ai R.Jeya J.Merli Dr.S.M A.Mari A.Mari	A - runl pand aroh in I.Ka imu imu	U N C H - Sec kuma di pra ini nnan thu thu	O2.O PSOC KG SSD SV SSD SV PEI N r thap	C O2.05 O2.55 O2.55 C PST CMS PSOC KG ES SM PSTS PKA, C DLAB / MI BL, MJM / BL, MJM / BL, MJM / STAFF NAM B- sec P.K. Arunkum M.Jeyamurug T.Gopu C.Muthamilse Dr.S.M.Kanna A.Marimuthu M.Jeyamurug	5 (5) 5 (5) 5 (7) 5 (7) 6 (7) 6 (7) 7	O2.55- O3.45 CE EJ ES SM CE EJ ILAB TG E.Jeyasr Dr.S.Ver S.Manof Dr.S.Ver S.Manof Dr.S.Ver S.Manof Dr.S.Ver S.Manof	i nkatesan naran anambal Cannan nmilselvi ani lakshmi i

K.L.N.C.E./EEE/HAND BOOK/2015-2016/EVEN/VI SEM/RJPP.10

K.L.N. COLLEGE OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

SYLLABUS

EC6651 OBJECTIVES:

COMMUNICATION ENGINEERING

To introduce different methods of analog communication and their significance To introduce Digital Communication methods for high bit rate transmission

To introduce the concepts of source and line coding techniques for enhancing rating of transmission of minimizing the errors in transmission.

To introduce MAC used in communication systems for enhancing the number of users. To introduce various media for digital communication

UNIT I ANALOG COMMUNICATION

AM – Frequency spectrum – vector representation – power relations – generation of AM – DSB, DSB/SC, SSB, VSB AM Transmitter & Receiver; FM and PM – frequency spectrum – power relations : NBFM & WBFM, Generation of FM and DM, Amstrong method & Reactance modulations : FM & PM frequency.

UNIT II DIGITAL COMMUNICATION

Pulse modulations – concepts of sampling and sampling theormes, PAM, PWM, PPM, PTM, quantization and coding : DCM, DM, slope overload error. ADM, DPCM, OOK systems – ASK, FSK,

PSK, BSK, QPSK, QAM, MSK, GMSK, applications of Data communication.

SOURCE CODES, LINE CODES & ERROR CONTROL (Qualitative

UNIT III only)

Primary communication – entropy, properties, BSC, BEC, source coding : Shaum, Fao, Huffman coding : noiseless coding theorum, BW – SNR trade off codes: NRZ, RZ, AMI, HDBP, ABQ, MBnBcodes : Efficiency of transmissions, error control codes and applications: convolutions & block codes.

UNIT IV MULTIPLE ACCESS TECHNIQUES

SS&MA techniques : FDMA, TDMA, CDMA, SDMA application in wire and wireless communication : Advantages (merits) :

UNIT V SATELLITE, OPTICAL FIBER – POWERLINE, SCADA

Orbits : types of satellites : frequency used link establishment, MA techniques used in satellite communication, earth station; aperture actuators used in satellite – Intelsat and Insat: fibers – types: sources, detectors used, digital filters, optical link: power line carrier communications: SCADA

TOTAL: 45 PERIODS

OUTCOMES:

Ability to understand and analyse, linear and digital electronic circuits.

TEXT BOOKS:

1. Taub & Schiling "Principles of Communication Systems" Tata McGraw Hill 2007.

2. J.Das "Principles of Digital Communication" New Age International, 1986.

REFERENCES:

1. Kennedy and Davis "Electronic Communication Systems" Tata McGraw hill, 4th Edition, 1993.

2. Sklar "Digital Communication Fundamentals and Applications" Pearson Education, 2001.

3. Bary le, Memuschmidt, Digital Communication, Kluwer Publication, 2004.

B.P.Lathi "Modern Digital and Analog Communication Systems" Oxford University Press, 1998

LT P C 3003

9

9

9

9

L T P C 3003

OBJECTIVES:

To understand steady state operation and transient dynamics of a motor load system.

To study and analyze the operation of the converter/chopper fed dc drive, both qualitatively and quantitatively.

To study and understand the operation and performance of AC motor drives.

To analyze and design the current and speed controllers for a closed loop solid state DC motor drive.

UNIT I DRIVE CHARACTERISTICS

Electric drive – Equations governing motor load dynamics – steady state stability – multi quadrant Dynamics: acceleration, deceleration, starting & stopping – typical load torque characteristics – Selection of motor.

UNIT II CONVERTER / CHOPPER FED DC MOTOR DRIVE

Steady state analysis of the single and three phase converter fed separately excited DC motor drive–continuous and discontinuous conduction– Time ratio and current limit control – 4 quadrant operation of converter / chopper fed drive.

UNIT III INDUCTION MOTOR DRIVES

Stator voltage control-energy efficient drive-v/f control-constant airgap flux-field weakening mode- voltage / current fed inverter - closed loop control.

UNIT IV SYNCHRONOUS MOTOR DRIVES

V/f control and self control of synchronous motor: Margin angle control and power factor control – permanent magnet synchronous motor.

UNIT V DESIGN OF CONTROLLERS FOR DRIVES

Transfer function for DC motor / load and converter – closed loop control with Current and speed feedback–armature voltage control and field weakening mode – Design of controllers; current controller and speed controller- converter selection and characteristics.

TOTAL: 45 PERIODS

OUTCOMES:

Ability to understand and apply basic science, circuit theory, Electro-magnetic field theory control theory and apply them to electrical engineering problems.

TEXT BOOKS:

- 1. Gopal K.Dubey, Fundamentals of Electrical Drives, Narosa Publishing House, 1992.
- 2. Bimal K.Bose. Modern Power Electronics and AC Drives, Pearson Education, 2002.
- 3. R.Krishnan, Electric Motor & Drives: Modeling, Analysis and Control, Prentice Hall of India, 2001.

REFERENCES:

- 1. John Hindmarsh and Alasdain Renfrew, "Electrical Machines and Drives System," Elsevier 2012.
- 2. Shaahin Felizadeh, "Electric Machines and Drives", CRC Press(Taylor and Francis Group), 2013.
- 3. S.K.Pillai, A First course on Electrical Drives, Wiley Eastern Limited, 1993.
- 4. S. Sivanagaraju, M. Balasubba Reddy, A. Mallikarjuna Prasad "Power semiconductor drives" PHI, 5th printing, 2013.
- 5. N.K.De., P.K.SEN"Electric drives" PHI, 2012.

Vedam Subramanyam, "Thyristor Control of Electric Drives", Tata McGraw Hill, 2007

1

9

9

9

9

OBJECTIVES:

To introduce the Building Blocks of Embedded System

To Educate in Various Embedded Development Strategies

To Introduce Bus Communication in processors, Input/output interfacing. To impart knowledge in Various processor scheduling algorithms.

To introduce Basics of Real time operating system and example tutorials to discuss on one real-time operating system tool

UNIT I INTRODUCTION TO EMBEDDED SYSTEMS

Introduction to Embedded Systems – The build process for embedded systems- Structural units in Embedded processor, selection of processor & memory devices- DMA – Memory management methods- Timer and Counting devices, Watchdog Timer, Real Time Clock, In circuit emulator, Target Hardware Debugging.

UNIT II EMBEDDED NETWORKING

Embedded Networking: Introduction, I/O Device Ports & Buses– Serial Bus communication protocols - RS232 standard – RS422 – RS485 - CAN Bus -Serial Peripheral Interface (SPI) – Inter Integrated Circuits (I^2C) –need for device drivers.

UNIT III EMBEDDED FIRMWARE DEVELOPMENT ENVIRONMENT

Embedded Product Development Life Cycle- objectives, different phases of EDLC, Modelling of EDLC; issues in Hardware-software Co-design, Data Flow Graph, state machine model, Sequential Program Model, concurrent Model, object oriented Model.

UNIT IV RTOS BASED EMBEDDED SYSTEM DESIGN

Introduction to basic concepts of RTOS- Task, process & threads, interrupt routines in RTOS, Multiprocessing and Multitasking, Preemptive and non-preemptive scheduling, Task communication-shared memory, message passing-, Inter process Communication – synchronization between processes-semaphores, Mailbox, pipes, priority inversion, priority inheritance, comparison of Real time Operating systems: Vx Works, 4C/OS-II, RT Linux.

UNIT V EMBEDDED SYSTEM APPLICATION DEVELOPMENT

Case Study of Washing Machine- Automotive Application- Smart card System Application,.

TOTAL: 45 PERIODS

OUTCOMES:

Ability to understand and analyse, linear and digital electronic circuits.

TEXT BOOKS:

- 1. Rajkamal, 'Embedded System-Architecture, Programming, Design', Mc Graw Hill, 2013.
- 2. Peckol, "Embedded system Design", John Wiley & Sons, 2010
- 3. Lyla B Das," Embedded Systems-An Integrated Approach", Pearson, 2013

REFERENCES:

1. Shibu. K.V, "Introduction to Embedded Systems", Tata Mcgraw Hill, 2009.

- 2. Elicia White," Making Embedded Systems", O' Reilly Series, SPD, 2011.
- 3. Tammy Noergaard, "Embedded Systems Architecture", Elsevier, 2006.
- 4. Han-Way Huang, "Embedded system Design Using C8051", Cengage Learning, 2009.

Rajib Mall "Real-Time systems Theory and Practice" Pearson Education, 2007

9

9

9

9

POWER SYSTEM OPERATION AND CONTROL

L T P C 3003

9

9

9

9

9

- To have an overview of power system operation and control.
- To model power-frequency dynamics and to design power-frequency controller.
- To model reactive power-voltage interaction and the control actions to be implemented for maintaining the voltage profile against varying system load.
- To study the economic operation of power system.
- To teach about SCADA and its application for real time operation and control of power systems.

UNIT I INTRODUCTION

EE6603

OBJECTIVES:

An overview of power system operation and control - system load variation - load characteristics - load curves and load-duration curve - load factor - diversity factor - Importance of load forecasting and quadratic and exponential curve fitting techniques of forecasting – plant level and system level controls .

UNIT II REAL POWER - FREQUENCY CONTROL

Basics of speed governing mechanism and modeling - speed-load <u>characteristics</u> – load sharing between two synchronous machines in parallel - control area concept - LFC control of a single-area system - static and dynamic analysis of uncontrolled and controlled cases - two-area system – modeling - static analysis of uncontrolled case - tie line with frequency bias control - state variable model - integration of economic dispatch control with LFC.

UNIT III REACTIVE POWER-VOLTAGE CONTROL

Generation and absorption of reactive power - basics of reactive power control - excitation systems – modeling - static and dynamic analysis - stability compensation - methods of voltage control: tapchanging transformer, SVC (TCR + TSC) and STATCOM – secondary voltage control.

UNIT IV UNIT COMMITMENT AND ECONOMIC DISPATCH

Formulation of economic dispatch problem – I/O cost characterization – incremental cost curve - coordination equations without and with loss (No derivation of loss coefficients) - solution by direct method and λ -iteration method - statement of unit commitment problem – priority-list method forward dynamic programming.

UNIT V COMPUTER CONTROL OF POWER SYSTEMS

Need for computer control of power systems - concept of energy control centre - functions - system monitoring - data acquisition and control - system hardware configuration – SCADA and EMS functions - network topology - state estimation – WLSE - Contingency Analysis - state transition diagram showing various state transitions and control strategies.

TOTAL : 45 PERIODS

OUTCOMES:

Ability to understand and analyze power system operation, stability, control and protection. **TEXT BOOKS:**

- 1. Olle.I.Elgerd, 'Electric Energy Systems theory An introduction', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 34th reprint, 2010.
- 2. Allen. J. Wood and Bruce F. Wollenberg, 'Power Generation, Operation and Control', John Wiley & Sons, Inc., 2003.
- 3. Abhijit Chakrabarti, Sunita Halder, 'Power System Analysis Operation and Control', PHI learning Pvt. Ltd., New Delhi, Third Edition, 2010

REFERENCES:

- 1. Nagrath I.J. and Kothari D.P., 'Modern Power System Analysis', Tata McGraw-Hill, Fourth Edition, 2011.
- 2. Kundur P., 'Power System Stability and Control, Tata McGraw Hill Education Pvt. Ltd., New Delhi, 10th reprint, 2010.
- 3. Hadi Saadat, 'Power System Analysis', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 21st reprint, 2010.
- 4. N.V.Ramana, "Power System Operation and Control," Pearson, 2011.
- 5. C.A.Gross, "Power System Analysis," Wiley India, 2011

OBJECTIVES:

To study mmf calculation and thermal rating of various types of electrical machines. To design armature and field systems for D.C. machines.

To design core, yoke, windings and cooling systems of

transformers. To design stator and rotor of induction machines.

To design stator and rotor of synchronous machines and study their thermal behaviour.

UNIT I **INTRODUCTION**

Major considerations in Electrical Machine Design - Electrical Engineering Materials - Space factor - Choice of Specific Electrical and Magnetic loadings - Thermal considerations - Heat flow -Temperature rise and Insulating Materials - Rating of machines – Standard specifications.

DC MACHINES UNIT II

Output Equations - Main Dimensions - Choice of Specific Electric and Magnetic Loading -Maganetic Circuits Calculations - Carter's Coefficient - Net length of Iron -Real & Apparent flux densities - Selection of number of poles - Design of Armature - Design of commutator and brushes - performance prediction using design values.

UNIT III TRANSFORMERS

Output Equations - Main Dimensions - kVA output for single and three phase transformers -Window space factor – Design of core and winding – Overall dimensions – Operating characteristics - No load current - Temperature rise in Transformers - Design of Tank - Methods of cooling of Transformers.

UNIT IV INDUCTION MOTORS

Output equation of Induction motor – Main dimensions – Choice of Average flux density– Length of air gap- Rules for selecting rotor slots of squirrel cage machines - Design of rotor bars & slots -Design of end rings – Design of wound rotor – Magnetic leakage calculations – Leakage reactance of polyphase machines- Magnetizing current - Short circuit current - Operating characteristics- Losses and Efficiency.

UNIT V SYNCHRONOUS MACHINES

Output equations – choice of Electrical and Magnetic Loading – Design of salient pole machines – Short circuit ratio - shape of pole face - Armature design - Armature parameters - Estimation of air gap length - Design of rotor -Design of damper winding - Determination of full load field mmf -Design of field winding – Design of turbo alternators – Rotor design.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

Ability to model and analyze electrical apparatus and their application to power system

TEXT BOOKS:

- Sawhney, A.K., 'A Course in Electrical Machine Design', Dhanpat Rai & Sons, New Delhi, 1. 1984.
- 2. M.V.Deshpande "Design and Testing of Electrical Machine Design" Wheeler Publications, 2010.

REFERENCES:

- 1. A.Shanmuga Sundaram, G.Gangadharan, R.Palani 'Electrical Machine Design Data Book', New Age International Pvt. Ltd., Reprint, 2007.
- 2. R.K.Agarwal "Principles of Electrical Machine Design" Esskay Publications, Delhi, 2002.
- 3. Sen, S.K., 'Principles of Electrical Machine Designs with Computer Programmes', Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, 1987.

9

3104

9

9

9

LT P C 3003

OBJECTIVES:

To study the generation of switching transients and their control using circuit – theoretical concept. To study the mechanism of lighting strokes and the production of lighting surges.

To study the propagation, reflection and refraction of travelling waves.

To study the impact of voltage transients caused by faults, circuit breaker action, load rejection on integrated power system.

UNIT I INTRODUCTION AND SURVEY

Review and importance of the study of transients - causes for transients. RL circuit transient with sine wave excitation - double frequency transients - basic transforms of the RLC circuit transients. Different types of power system transients - effect of transients on power systems – role of the study of transients in system planning.

UNIT II SWITCHING TRANSIENTS

Over voltages due to switching transients - resistance switching and the equivalent circuit for interrupting the resistor current - load switching and equivalent circuit - waveforms for transient voltage across the load and the switch - normal and abnormal switching transients. Current suppression - current chopping - effective equivalent circuit. Capacitance switching - effect of source regulation - capacitance switching with a restrike, with multiple restrikes. Illustration for multiple restriking transients - ferro resonance.

UNIT III LIGHTNING TRANSIENTS

Review of the theories in the formation of clouds and charge formation - rate of charging of thunder clouds – mechanism of lightning discharges and characteristics of lightning strokes – model for lightning stroke - factors contributing to good line design - protection using ground wires - tower footing resistance - Interaction between lightning and power system.

UNIT IV TRAVELING WAVES ON TRANSMISSION LINE COMPUTATION OF TRANSIENTS

Computation of transients - transient response of systems with series and shunt lumped parameters and distributed lines. Traveling wave concept - step response - Bewely's lattice diagram - standing waves and natural frequencies - reflection and refraction of travelling waves.

UNIT V TRANSIENTS IN INTEGRATED POWER SYSTEM

The short line and kilometric fault - distribution of voltages in a power system - Line dropping and load rejection - voltage transients on closing and reclosing lines - over voltage induced by faults -switching surges on integrated system Qualitative application of EMTP for transient computation.

TOTAL : 45 PERIODS

OUTCOMES:

Ability to understand and analyze power system operation, stability, control and protection.

TEXT BOOKS:

- 1. Allan Greenwood, 'Electrical Transients in Power Systems', Wiley Inter Science, New York, 2nd Edition, 1991.
- 2. Pritindra Chowdhari, "Electromagnetic transients in Power System", John Wiley and Sons Inc., Second Edition, 2009.
- 3. C.S. Indulkar, D.P.Kothari, K. Ramalingam, 'Power System Transients A statistical approach', PHI Learning Private Limited, Second Edition, 2010.

REFERENCES:

- 1. M.S.Naidu and V.Kamaraju, 'High Voltage Engineering', Tata McGraw Hill, Fifth Edition, 2013.
- 2. R.D. Begamudre, 'Extra High Voltage AC Transmission Engineering', Wiley Eastern Limited, 1986.
- 3. Y.Hase, Handbook of Power System Engineering," Wiley India, 2012.
- J.L.Kirtley, "Electric Power Principles, Sources, Conversion, Distribution and use," Wiley, 2012

9

9

9

9

K.L.N. COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING **LECTURE SCHEDULE**

Format No.:11 Issue No.: 02 Revision No.: 01 Date: 23/06/12

Degree/Program : **B.E./EEE ENGINEERING** Duration Semester : VI

Regulation : 2013 / AUC

Course Name : COMMUNICATION

Course Code : EC6651

Section :A, B & C

Staff : P.K.Arun Kumar (A &B Sec) & E.Jeyasri (C Sec)

AIM :

> To introduce the concepts of communication systems engineering using wire and wireless medium **OBJECTIVES:**

: January '16 to April'16

- > To introduce different methods of analog communication and their significance
- > To introduce Digital Communication methods for high bit rate transmission
- > To introduce the concepts of source and line coding techniques for enhancing rating of transmission of minimizing the errors in transmission.
- > To introduce MAC used in communication systems for enhancing the number of users.
- > To introduce various media for digital communication
- **COURSE OUTCOMES:** After the course, the student should be able to

CO	Course Outcomes	POs	PSOs
C310.1	Explain the operation of Amplitude Modulation , draw the frequency spectrum and vector representation of AM	1,2,3,4,5,7,11	1,2,3
C310.2	Compare the different methods of QPSK, BFSK and GMSK	1,2,3,4,5,6	1,3
C310.3	Analyze how information is transmitted to receiver using the Huffman coding	1,2,3,6,7	1,3
C310.4	Discuss about the various types of multiple access techniques	1,3,4,5,	1,2
C310.5	Distinguish between INTELSAT and INSAT	1,2,3,5,11	1,2

S.No	Date	Period Number	Topics to be Covered	Book No [Page No]		
UI	UNIT I: ANALOG COMMUNICATION Ta					
1			AM – Frequency spectrum	R6(2.1)		
2			Vector representation - power relations	R6(2.5),(2.10)		
3			Generation of AM –DSB	R6(3.1),(4.1)		
4			DSB/SC, SSB	R6(4.2),(4.11)		
5			VSB AM Transmitter & Receiver	R6(4.21),(5.1),(5.3)		
6			FM and PM – frequency spectrum	R6(6.1)		
7			Power relations : NBFM & WBFM	R6(6.13),(6.14)		
8			Generation of FM and DM	R6(7.1),(3.7)		
9			Armstrong method & Reactance Modulations: FM & PM frequency.	A R6(7,5),(7.2)		
10			Unit-1 Revision, NPTEL Video – Unit-I			
11			NPTEL Video – Unit-I			
12			Anna University important Part-A & Part-B Questions D	Discussion – Unit-1		
	l Periods:	12		e Of Submission : Portion:Unit-1		
UNIT	II: DIGITA	L COMMU		Target Periods : 10		
13			Pulse modulations ,concepts of sampling and sampling theormes	R6(1.1),(1.2)		
14			PAM, PWM	R6((1.7),(1.14)		
15			PPM, PTM	R6(1.18),(1.14)		
16			Quantization and Coding – DCM	R6(2.4),(2.16),(2.1)		
17			DM, slope overload error	R6(3.4),(3.7)		
18			ADM, DPCM, OOK systems	R6(3.9),(3.1)		

K.L.N.C.E./EEE/HAND BOOK/2015-2016/EVEN/VI SEM/RJPP.17

19			ASK, FSK, PSK	R6(4.5),(4.8),(4.13)
S.No	Date	Period Number	Topics to be Covered	Book No [Page No]
20			BSK, QPSK, QAM	R6(4.14),(4.19) (4.26)
21			MSK, GMSK, applications of Data communication	R6(4.29),(4.34)
22			Unit-2 Revision, NPTEL Video – Unit-II	
23			NPTEL Video – Unit-II	
24			Anna University important Part-A & Part-B Questions Dis	cussion – Unit-2
Tota	Periods:	12		est Portion:Unit-1&2
			LINE CODES & ERROR CONTROL (Qualitative only)	Target Periods : 9
25			Primary communication – entropy, properties	R6(1.1),(1.3),(1.5)
26			BSC, BEC,	R6(1.20),(1.21)
27			source coding : Shaum, Fao,	R6(2.1),(2.3)
28			Huffman coding : noiseless coding theorem	R6(2.7),(2.12)
29			BW – SNR trade off codes: NRZ	R6(3.1),(3.5)
30			RZ, AMI	R6(3.7)(3.10)
31			HDBP, ABQ	R6((3.12)
32		1	MBnB codes : Efficiency of transmissions	R6(3.12)(3.17)
		1	Error control codes and	R6(4.1),(4.2),(4.6)
33			applications: convolutions & block codes	100(111),(112),(110)
24			Unit-3 Revision & Anna University important Part-A & Pa	art-B Questions
34			Discussion – Unit-3	
Tota	Periods:	10	Assignment -2 Date of Announcement : Date O	f Submission :
				rtion:Unit-3
UNIT	IV: MULTI	PLE ACCE	SS TECHNIQUES	Target Periods : 9
35			SS&MA toohniquos	R6(1.1),(2.1)
36			SS&MA techniques	R6(2.6)
37			FDMA	R6(2.9)
38				R6(2.14)
39			TDMA	
40				R6(1.1),(2.1)
41			CDMA	R6(2.6)
42			SDMA	R6(2.9)
43			Application in wire and wireless communication: Advantages (merits)	Material
44			Unit-4 Revision & Anna University important Part-A & Pa Discussion – Unit-4	art-B Questions
Tota	Periods:	10		st Portion:Unit-3 &4
		ITE, OPTIC	CAL FIBER – POWERLINE, SCADA	Target Periods :
45 46			Orbits: types of satellites	R6(1.2),(1.4)
47		1	Frequency used link establishment	R6(1.7)
48			MA techniques used in satellite communication	R6(1.9)
49		1	Earth station ,Aperture actuators used in satellite	R6(1.25)
50			Intelsat and Insat	R6(1.29),(1.34)
50 51 52			Fibers –types: sources, detectors used digital filters	R6(2.1),(2.6),(2.12) (2.16)&(2.24)
53			Ontical link: nowar line communications: SCADA	R6(2.32)
53 54			Optical link: power line carrier communications: SCADA Unit-5 Revision & Anna University important Part-A & Pa Discussion – Unit-5	, , ,
Tota	l Periods:	10	Assignment -3 Date of Announcement : Date Of	Submission : rtion:Unit-5

	CONTENT BEYOND THE SYLLABUS	Target Periods: 02
55	Commercial applications of Bluetooth	Material
56		
	QUIZZES	Target Periods: 02
57	Quizzes –I – Unit-1,2	
58	Quizzes –II – Unit-3,4&5	
	SEMINAR	Target Periods: 04
59	Global System for Mobile communication (GSM) & Near	field communication
60	(NFC) – Seminar -1	
61	Wireless Fidelity (Wi-Fi) & MATLAB applications to Co	mmunication systems –
62	Seminar -2	·

Text Book / Reference

S. N	. No Title of the Book		Author	Publisher	Year
1	T1	Principles of communication systems	Taub & Schiling	Tata McGraw hill	2007
2	T2	Principles of Digital communication	Das J	New Age International	1986
3	R1	Electronic communication systems	Kennedy and Davis	Tata McGraw hill, 4th edition	1993
4	R2	Digital communication fundamentals and applications	Sklar	Pearson Education	2001
5	R3	Digital Communication	Baryle, Memuschmidt	Kluwer Publication	2004
6	R4	Electronic communication systems	Wayne Tomasi	Pearson Education	2009
7	R5	Modern digital and analog communication systems	Lathi B.P	Oxford University Press	1998
8	R6	Communication Engineering	K.Muralibabu	Lakshmi Publications	2013

Website Reference

- <u>http://en.wikipedia.org/wiki/Analog_modulation</u>
- <u>http://people.brunel.ac.uk/~eestprh/EE5514/lesson5_new.pdf</u>
- <u>http://www.jisc.ac.uk/whatwedo/themes/network/sat/report3.aspx</u>
- <u>http://nptel.ac.in/video.php?subjectId=117102059</u>

STAFF INCHARGE

HOD/EEE

K.L.N. COLLEGE OF ENGINEERING, POTTAPALAYAM - 630 612

Department of Electrical and Electronics Engineering

Format No.:11

Issue No.: 02 Revision No.: 01

Date: 23/06/12

Lecture Schedule

Degree/Programme: B.E / EEESemester: VISection: A, B & CCourse code & Name:EE6601 & SOLID STATE DRIVESDuration: Jan-Apr 2016.Regulation:2013/AUCStaff: Dr.S.VENKATESAN, M.JEYAMURUGAN & R. JEYAPANDIPRATHAP

<u>AIM</u>: To study and understand the operation of electric drives controlled from a power electronic converter and to introduce the design concepts of controllers.

OBJECTIVES:

- To understand steady state operation and transient dynamics of a motor load system.
- To study and analyze the operation of the converter/chopper fed dc drive, both qualitatively and quantitatively.
- To study and understand the operation and performance of AC motor drives.
- To analyze and design the current and speed controllers for a closed loop solid state DC motor drive.

Prerequisites: Electronic Devices and Circuits, Electrical machines, Power Electronics

<u>COURSE OUTCOMES</u>: After the course, the student should be able to:

COs	Course Outcomes	POs	PSOs
C311.1	Classify the various types of drives and load torque characteristics and Apply the multi quadrant dynamics in hoist load system.	1	1
C311.2	Analyze the operation of steady state analysis of single phase and three phase fully controlled converter and Chopper fed separately excited dc motor drives and discuss the various control strategies of converter.	1,2,3,4	1
C311.3	Explain the operation and characteristics of various methods of solid state speed control of induction motor.	1,2	1
C311.4	Describe the operation of various modes of V/f control of synchronous motor drives and different types of permanent magnet synchronous motor drives.	1	1
C311.5	Design a current and speed controller and develop the transfer function for DC motor, load and converter, closed loop control with current and speed feedback.	1,2,3,4	1
	То	tal : 45 Peri	iods

S. No	Date	Period Number	Topics to be Covered		ook No age No]	
UNIT	UNIT - I: DRIVE CHARACTERISTICS Target Periods : 5					
1			Electrical Drives - Introduction	T1[1]	R7[1.1]	
2			General Electric Drive System	T1[3]	R7[1.4]	
3			Equations governing motor load dynamics	T1[11]	R7[1.8]	
4			Steady state stability	T1[23]	R7[1.19]	
5			Multi quadrant dynamics	T1[12]	R7[1.13]	
6			Acceleration including starting,	T1[32]	R7[1.21]	
7			Deceleration including stopping		R7[1.23]	
8			Typical Load Torque Characteristics	T1[18]	R7[1.24]	
9			Selection of motor, Revision	T1[44]	R7[1.4]	
Tota	l Periods:	9	Assignment - I	Date of Submiss	sion :	
			Test – I: Class Test-I	Portion :	Unit – 1	
UNIT	C – II: CON	VERTER/C	HOPPER FED DC MOTOR DRIVE	Ta	arget Periods : 9	
10			Controlled rectifier fed DC Motor drive	T1[97]	R7[2.1]	
11			Steady state analysis of the single phase half controlled converter fed	T1[109]	R7[2.32]	
			separately excited DC motor drive-Continuous conduction mode			
12			Steady state analysis of the single phase half controlled converter fed	T1[107]	R7[2.36]	
			separately excited DC motor drive-Discontinuous conduction mode			
13			Steady state analysis of the single phase full controlled converter fed	T1[100]	R7[2.47]	
			separately excited DC motor drive-Continuous conduction mode			
14			Steady state analysis of the single phase full controlled converter fed	T1[98]	R7[2.45]	
			separately excited DC motor drive-Discontinuous conduction mode			
15			Steady state analysis of the three phase half & fully controlled	T1[111]	R7[2.80,A3]	
			converter fed separately excited D.C motor drive			
16			Chopper fed D.C motor drive -Time ratio and current limit control	T1[121]	R7[3.1]	

17		Four quadrant operation of converter fed drive	T1[114]	R7[2.91]
18		Four quadrant operation of chopper fed drive, Revision	T1[122]	R7[3.37]
Total Periods:	9		Date of Submis	
	1,2	Test – II: CIT-I	Portion : Uni	
UNIT – III: IND	UCTION	MOTOR DRIVES	Tar	get Periods : 9
19		Stator voltage control	T1[183]	R7[5.23]
20		Energy efficient drive	T1[218]	R7[A.11]
21		Static Kramer Drive-Static Scherbius Drive	T1[221]	R7[5.159]
22		V/f control	T1[186]	R7[5.63]
23		Constant air-gap flux control	-	R7[5.75]
24		Field weakening mode	-	R7[5.78]
25		VSI fed Induction motor drive	T1[191]	R7[5.79]
26		CSI fed Induction motor drive	T1[206]	R7[5.86]
27		Closed loop control, Revision	T1[198,208]	R7[5.88]
28		Seminar-I	-	-
29		Quiz-I	-	-
Total Periods:	9	Test – III : Class Test-II	Portion : Uni	t - III
UNIT – IV: SYN	CHRONC	DUS MOTOR DRIVES	Targ	et Periods : 9
30		Introduction-Synchronous Motor	T1[244]	R7[6.1]
31		Synchronous motor Variable Speed Drives	T1[256]	R7[6.8]
32		V/f control of synchronous motor	T1[256]	R7[6.8]
33		Self-control of synchronous motor drive a load commutated thyristor inverter	T1[260]	R7[6.9]
34		Self-controlled synchronous motor drive employing a cycloconverter	T1[267]	R7[6.20]
35		Marginal angle control	T1[263]	R7[6.13]
36		Power factor control	-	R7[6.22]
37		Permanent magnet synchronous motor	T1[267]	R7[6.22]
38		Revision		
39		Seminar-II	-	-
40		Quiz-II	-	-
Total Periods:	9	Assignment - III	Date of Submi	
		Test – IV: CIT-II	Portion : Uni	
	SIGN OF C	CONTROLLERS FOR DRIVES	Targ	et Periods : 9
41		Transfer function for DC motor / load	-	R7[4.5]
42		Transfer function for DC motor / converter	-	R7[4.12]
43		Closed loop control with current feedback	T1[35]	R7[4.2]
44		Closed loop control with speed feedback		R7[4.3]
45		Closed loop control with armature voltage control and field weakening mode	-	R7[4.4]
46		Design of controllers: Current controller	-	R7[4.19]
47		Design of controllers: speed controller	-	R7[4.15]
48		Converter selection and characteristics	-	R7[4.28]
49		Revision	-	-
Total Periods:	9	Test – V: Class Test-III	Portion : Uni	t - V
50		Content beyond Syllabus	-	-
51		NPTEL	-	-

Books: Text-(T) / Reference-(R)

S. N	S. No Title of the Book		Author	Publisher	Year
1	T1	Fundamentals of Electrical Drives	Gopal K.Dubey	Narosa Publishing House	1992
2	T2	Modern Power Electronics and AC Drives	Bimal K.Bose	Pearson Education	2002
3	T3	Electric Motor & Drives: Modeling, Analysis and Control	R.Krishnan	Prentice Hall of India	2001
4	R1	Electrical Machines and Drives System	John Hindmarsh and	Elsevier	2012
			Alasdain Renfrew		
5	R2	Electric Machines and Drives	Shaahin Felizadeh	CRC Press(Taylor and	2013
				Francis Group)	
6	R3	A First course on Electrical Drives	S.K.Pillai	Wiley Eastern Limited	1993
7	R4	Power semiconductor drives	S. Sivanagaraju,	PHI, 5 th printing	2013
			M. Balasubba Reddy,		
			A. Mallikarjuna Prasad		
8	R5	Electric drives	N.K.De., P.K.SEN	PHI	2012
9	R6	Thyristor Control of Electric Drives	Vedam Subramanyam	Tata McGraw Hill	2007

$Mapping \ of \ Course \ Outcomes \ (COs) \ , \ Course \ (C), \ Program \ Specific \ Outcomes \ (PSOs) \ with \ Program \ Outcomes. \ (POs) - Before \ CBS$

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C311.1	3	-	-	-	-	-	-	-	-	-	-	-	1	-	-
C311.2	3	2	1	3	-	-	-	-	-	-	-	-	3	-	-
C311.3	3	1	-	-	-	-	-	-	-	-	-	-	1	-	-
C311.4	3	-	-	-	-	-	-	-	-	-	-	-	1	-	-
C311.5	3	2	1	2	-	-	-	-	-	-	-	-	2	-	-
C311	3	1	-	1	-	-	-	-	-	-	-	-	2	-	-
	Content beyond syllabus added								PO	s streng	gthened	'Vacant	filled	CO	/Unit
"Variabl	"Variable Frequency Drives-Power electronic simulation							PO5(2),PO7(2),PSO2(1)vacant			int	C311.	5/V		
software	software based", designed specifically for use in power							filled	1						
electroni	electronics and motor drive simulations.														

STAFF INCHARGE

HOD/EEE

K.L.N. College of Engineering, Pottapalayam- 630 612

Department of Electrical and Electronics Engineering

Format No.:11 Issue No.: 02 Revision No.: 01 Date: 23/06/12

Lecture Schedule

Course/Branch: B.E/EEESubject: Embedded SystemsDuration: January 2016 to April 2016Subject Code: EE 6602Semester: VISection: A, B & CRégulation: 2013AUC/AUT/AUM: AU-ChennaiStaff Handling: S.MANOHARAN, T.GOPU & R.JEYAROHINI

OBJECTIVES

- To introduce the Building Blocks of Embedded System
- To Educate in Various Embedded Development Strategies
- To Introduce Bus Communication in processors, Input/output interfacing.
- To impart knowledge in Various processor scheduling algorithms.
- To introduce Basics of Real time operating system and example tutorials to discuss on one real time operating system tool

<u>COURSE OUTCOMES:</u> After the course, the student should be able to:

СО	Course Outcomes	POs
C312.1	Analyze the basic build process of embedded systems, structural units in embedded processor and selection of processor and memory devices depending upon the applications.	1,2,4,5
C312.2	Classify the types of I/O device ports and buses and different interfaces for data transfer.	1,2,3,5
C312.3	Modeling of the Embedded Product Development Life Cycle (EDLC) by using different techniques like state machine model, sequential program model and concurrent model	1,2,3,4,5,6
C312.4	Analyze about the basic concept of Real Time Operating Systems and plan to scheduling of different task and compare the features of different types of Real Time Operating Systems	1,2,3,5,6
C312.5	Apply the knowledge of programming concepts of Embedded Systems for various applications like Washing Machine automotive and Smart Card System applications	1,2,3,5,6,7

S.N o	Date	Period No.	Topics to be covered	Book No [Page No]
Unit-I	[Target Period:9		
1.			Introduction to Embedded Systems	T1[1-7]
2.			The build process for embedded systems	Material
3.			Structural units in Embedded processor	T1[8]
4.			Selection of processor & memory devices	T1[113-118]
5.			DMA	T[218]
6.			Memory management methods	Material
7.			Timer and Counting devices	T1[152]
8.			Watchdog Timer, Real Time Clock	T1[157-158]
9.			In circuit emulator, Target Hardware Debugging	T1[656]
I				Total Periods : 9
Unit-	II		EMBEDDED NETWORKING	Target Period:9
10			Embedded Networking: Introduction	Material
11			I/O Device	T1[130-131]
12			Ports & Buses	T1[131-136]
13			Serial Bus communication protocols -RS232 standard	T1[137]

14	RS422 – RS485	Material,T1[1 38]
15	CAN Bus	T1[161-163]
16	Serial Peripheral Interfa	
17	Inter Integrated Circuits	
18	Need for device drivers	T1[188]
Assig	gnment 1	Date of Submission :
	·II-CIT-I-[]	Total Periods : 9
Unit	-III EMBEDDED FIRMWARE DEVEL	OPMENT ENVIRONMENT Target Period:9
19	Embedded Product Dev	elopment Life Cycle- objectives R1[622-625]
20	Different phases of EDI	.C R1[625-636]
21	Modeling of EDLC	R1[636-641]
22	Issues in Hardware-soft	ware Co-design R1[205-206]
23	Data Flow Graph	R1[207-208]
24	State machine model	R1[208-211]
25	Sequential Program Mo	del R1[211]
26	Concurrent Model	R1[212-213]
27	Object oriented Model	R1[213-214]
Assig	gnment - 2 Date of Submission :	Total Periods : 9
Unit		
28	Introduction to basic co	
29	Task, process & threads	, Multiprocessing and Multitasking T1 [305-308]
30	Interrupt routines in RT	· · ·
31	Preemptive and non-pre	
32		ared memory, message passing T1 [326- 330,335]
33	Inter process Communic	cation – synchronization between T1 [330-332]
34	Semaphores, Mailbox, r	bipes T1 [334-341]
35	Priority inversion, prior	
36		e Operating systems: Vx Works, чС/OS- T1 [453,496]
Assig	gnment - 3	Date of Submission :
	– III – Class Test – II []	Total Periods :9
Unit	-V EMBEDDED SYSTEM APPLIC	CATION DEVELOPMENT Target Period:9
37		machine and block diagram R1[83-85]
38	Design specification &	schematic diagram R1[83-85]
39	Software design of wash	ning machine R1[83-85]
40	Introduction to Automo	
41		tive embedded systems R1[85-89]
42		motive system & car navigation systems R1[85-89]
43		rd systems & block diagram T1[593-604]
44	ASIC for smart card sys	
45	Embedded software for	
46		for Embedded Systems[Content Beyond Material
	Syllabus]	
Test	- IV - CIT - II - []	Total Periods :9
Test	– V – Model Examination – Theory []	
Boo	k Reference	

 Book Reference

 S.No
 Title of the Book
 Author
 Publisher
 Year

 Embedded System Architecture
 Paikemel
 Mc Grow Hill
 2013

0.110	The of the book	Author	I UDIISIIEI	1 cal
T1	Embedded System-Architecture,	Rajkamal	Mc Graw Hill	2013
11	Programming, Design			
T2	Embedded system Design	Peckol	John Wiley & Sons	2010
Т3	Embedded Systems-An Integrated	Lyla B Das	Pearson	2013
15	Approach			

R1	Introduction to Embedded Systems	Shibu. K.V	Tata Mcgraw Hill	2009
R2	Making Embedded Systems	Elicia White	O' Reilly Series SPD	2011
R3	Embedded Systems Architecture	Tammy Noergaard,	Elsevier	2006
R4	Embedded system Design Using C8051	Han-Way Huang,	Cengage Learning	2009
R5	Real-Time systems Theory and Practice	Rajib Mall	Pearson Education	2007

Website reference:

http://nptel.ac.in/courses/108105057/ http://nptel.ac.in/courses/108102045/ https://docs.google.com/file/d/0B7tBh7YQV0DGTHVMa0ZRVzh0XzQ/edit

STAFF INCHARGE

HOD/EEE

K.L.N. COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Lecture Schedule

Format No.:11

Issue No.: 02 Revision No.: 01

Date: 23/06/12

Courses/Branch	: BE / EEE Control	Subject	: Power System Operation and
Duration Semester	: July – Oct'2014 : VI Section: A, B	5	: EE6603 dling : Dr.K.Gnanambal, C.Muthamil Selvi & J.Merlin
Regulation	: 2013	AUC	

AIM

To understand the day to day operation of power system and the control actions to be

implemented on the system to meet the minute-to-minute variation of system load demand. **OBJECTIVES**

- 1. To have an overview of power system operation and control.
- 2. To model power-frequency dynamics and to design power-frequency controller.
- 3. To model reactive power-voltage interaction and the control actions to be implemented for maintaining the voltage profile against varying system load. **PREREOUISITES: Transmission and Distribution. Power system analysis**

CO	Course Outcome	POs	PSOs
C313.1	Analyze the various load characteristics with load curve and load duration curve.	1,2,5	1
C313.2	Describe modeling of power-frequency dynamics and design power-frequency controller	1,2,3,4,5	1
C313.3	Explain the modeling of reactive power-voltage interaction and the control actions	1,2,3,4,5	1
C313.4	Solve economic dispatch problems and unit commitments problems in power systems	1,2,3,4,5	1
C313.5	Explain the need of computer controls to energy management using SCADA	1,2,5	1

			UNIT I- INTRODUCTION	Target Period:10
S.No	Date	Period	Topics to be Covered	Book No
		Number		[Page No]
1			System load – variation	T3 [1.4-1.5]
2			System - load characteristics	T3 [1.5-1.15]
3			System - load curves and load-duration	T3 [1.16-1.17]
			curve (daily, weekly and annual)	
4			load factor - diversity factor	T3 [1.18-1.27]
5			Importance of load forecasting and simple	T3 [1.36-1.37]
			techniques of forecasting.	R1[575-577]
6			An overview of power system operation	T3 [1.36-1.38]
7			An overview of power system control	T3 [1.33-1.36]
			The role of computers in the	
			implementation. (Qualitative treatment with	
			block diagram).	
8			Class Test-1	
	UNIT	II REAL PO	OWER - FREQUENCY CONTROL	Target Period:9
9			Basics of speed governing mechanism and	T3 [2.2-2.12]
			modeling	
10			speed load characteristics – load	T3 [2.12-2.27]
			sharing between two synchronous machines	
			in parallel.	
11			Control area concept LFC control of	T3 [2.27-2.41]
			a single-area system. Static Controlled and	

		uncontrolled	
12		Dynamic analysis of unco	ontrolled and T3 [2.41-2.55]
		controlled cases.	
13		Integration of economic d	lispatch control T3 [2.55-2.57]
		with LFC.	
14		Two area system modelin	ng- static T2[727-732]
		analysis of controlled case	e
15		Tie line with frequency bi	ias control of two- T3[2.71-2.75]
		area system	
16		state variable model	T3[2.75-2.77]
		CIT –I Date:08.08	3.14
		Assignment -1	
Date	of Announcen		Date of Submission:25.7.14
	UNIT I	I REACTIVE POWER–VOLTAGI	
17		Basics of reactive power	control – Types of T3[3.1-3.4]
		Excitation systems	
18		Excitation systems – mod	
19		Static and dynamic analys	
20		Stability compensation	T3[3.15-3.17]
21		Generation and absorption	n of reactive T3[4.6-4.17]
		power	
22		Relation between voltage	, power and $R7[3.15 - 3.17]$
23		reactive power at a node	
24		Method of voltage contro	
25		Tap changing transformer	
		System level control using	
		voltage magnitude setting	
		OLTC transformer and M	
		switched capacitors to ma voltage profile and to min	
		transmission loss.	mmze
26		Class Test-2	
	IIII IV COMN	ITMENT AND ECONOMIC DISP	PATCH Target Period:9
27		Statement of economic di	8
28		cost of generation , increm	
99		Coordination equations w	
		with loss	
30		solution by direct method	and λ - iteration T3[6.16-6.40]
		method. (No derivation of	
31		Statement of Unit Commi	
		constraints; spinning reserved	1
		constraints, hydro constra	ints, fuel
		constraints and other cons	straints.
32		Solution methods – Priori	
		(Numerical problems only	
		method using full-load av	verage production
		Cost)	
33		Forward dynamic program	
CIT		:22.9.14 Assignm	
D		acement:12.8.14	Date of Submission:22.8.14
	UNIT V	COMPUTER CONTROL OF POV	
34		Need of computer control	of power systems. T3[7.1]

35		Concept of energ	y control centre (or) load	T3[7.3-7.5]
		dispatch centre ar	nd the functions -	
36			g data acquisition and	T3[7.5-7.7]
37		System hardware EMS functions.	configuration – SCADA	T3[7.7-7.14]
38		Network topology	*7	T3[7.1-7.3] T3[7.2-7.28]
38 39		state estimation	y	T3[7.28-7.45]
40			is and control. Various	T3[7.45-7.50]
40			(Normal, alert, emergency,	15[7.45-7.50]
			restorative). State transition	
			g various state transitions	
		and control strate		
41		Content Beyond t		Notes
71		•	omic Dispatch problem	110105
		using Optimizatio		
CIT –		Date: 13.10.14	Jil Teeninques	
CII	111		el Test)	
Text l	Rook	(141044		
S.No	Title of the Book	Author	Year	
1	Power System Stability	P.Kundur	Publisher Tata McGraw Hill Publishing	
	and Control		company, New Delhi	,
2	Power System Analysis	Abhijit	2 nd Edition,Prentice Hall of Ir	ndia 2008
	Operation and Control	Chakrabarti, Sunita Halder		
3	Power System Operation	M.Jeraldin	A.R.S. Publiations Chennai	2011
De	and Control	Ahela		
	ence Book			1002
1.	Electric Energy System Thory:An Introduction	Elgerd, O.I	Tata McGraw Hill Edition	1983
2.	Power System Analysis	Hadi Saadat	Tata McGraw Hill Publishing company, New Delhi	
3.	Generation, Distribution	C.L.Wadhwa	New Age International Pvt.Lt	ad 2003
	And Utilization opf Electrical Energy			
4.	Electrical Energy Power Generation Operation and Control	Allen J.Wood, Bruce F.Wollenberg	John Wily and Sons, Inc	2003
4.	Electrical Energy Power Generation Operation and Control Modern Power Sytem	Bruce	Tata McGraw Hill Publishing	
	Electrical Energy Power Generation Operation and Control	Bruce F.Wollenberg I.J.Nagrath and		

Staff In charge

HOD / EEE

Lecture Schedule

Degree/Programme: **B.E / EEE**

Course code &Name:EE 6604 DESIGN OF ELECTRICAL MACHINESDuration:Jan - Apr 2016Semester:VISection:A,B,C.Staff : Dr.S.M.KANNANRegulation : 2013/AUCAIM:To expose the students to the concept of design of various types of Electrical Machines.OBJECTIVES

• To study mmf calculation and thermal rating of various types of electrical machines.

- To design armature and field systems for D.C. machines.
- To design core, yoke, windings and cooling systems of transformers.
- To design stator and rotor of induction machines.
- To design stator and rotor of synchronous machines and study their thermal behavior.

<u>COURSE OUTCOMES:</u> After the course, the student should be able to:

CO	Course Outcomes	POs	PSOs
C314.1	Compare Electrical Engineering materials, determine heat dissipation due Conduction, convection and radiation.	1,2,3,5	2,1
C314.2	Calculate mmf for slots and teeths, apparent flux density, main dimensions and winding details of DC machines.	1,2,3,5	2,1
C314.3	Design core, yoke, winding and cooling system of transformers.	1,2,3,5	2,1
C314.4	Develop output equation of AC machines, design stator and rotor of induction machines.	1,2,3,5	2,1
C314.5	Design stator and rotor of synchronous machines analyze their thermal behavior, design field systems for turbo alternators.	1,2,3,5	2,1

S.No	Date	Period Number	Topics to be Covered	Book No [Page No]
			UNIT I: INTRODUCTION Target	Periods : 9+3
1			Design of machines-major considerations-design factors-	1(1.1-1.4)
1			limitations in design.	2(20-21)
			Electrical engineering materials- Electrical Conducting	1(2.1-2.10)
2			materials-requirements — characteristics-copper&	3(11-15)
2			aluminium-iron and steel-alloys of copper-materials of high	
	resistivity			
			Magnetic materials-soft & hard-hysteresis loop-ageing-	1(2.10-16)
3			dynamo grade steel-transformer grade steel-high resistance	3(15-36)
			steel-c.r.o.s-	
4			Insulating materials-electrical properties-classification of	1(2.16-2.24)
4			Insulating materials-application of insulating materials	
~			Total loadings-specific electric and magnetic loadings-	1(6.1-6.14)
5			choice of specific magnetic &electric loadings	2(17-18)
6			Rating of machines-standard specifications	1(4.29),2(5-6)
			Thermal considerations-modes of heat dissipation-	
7			conduction-radiation-convection-calculation of internal	1(4.1-4.11)
			temperature-temperature gradient in cores-Tutorial-I-	
8			Heat flow in two dimensions	1(4.11-4.13)
9			Thermal resistivity of winding-space factor-Tutorial-II-	1(4.13-4.14)
10			Thermal state in Electrical machines-heating & cooling time	1(4.18-4.29)
10			constant-temperature rise-Tutorial-III-	
Tota	l Periods:	12	Assignment-I-DOS: Test-I :	
			UNIT II:DC MACHINES Target P	eriods : 10+3

K.L.N.C.E./EEE/HAND BOOK/2015-2016/EVEN/VI SEM/RJPP.29

		Magnetic circuit Calculations-Calculation of mmf-airgap-	1(3.1-3.17)
11		smooth and slotted armature-fringing-Carter's gap	2(49-64)
		coefficient-	3(101-1123)
12		Gap contraction factor for slots and ducts-effect of saliency- field form factor-net length of Iron-mmf for teeth-	1(3.1-3.17)
13		Real and apparent flux densities	1(3.17-27)
14		Tutorial - I	
		Constructional details-relation between rating and	1(6.1-6.4)
15		dimensions of rotating machines-Main dimensions-Output	2(110-112)
		equation of D.C. machines-output co-efficient.	3(451-452)
		Selection of Number of Poles-guiding factor for choice of	1(9.18-25)
16		number of poles-core length-pole proportions-pole face	2(114)
		profile- Separation of D and L for D.C. Machines-	3(456-461)
17		Tutorial - II	
		Factors affecting size of Electric Machines- Choice of	1(6.4-6.18)
18		specific Magnetic Loading-Choice of Specific electric	2(16,113-
		loadings-	114)
		Armature design-Choice of armature winding-No.of	1(9.40-58)
19		armature conductors-armature coils-guiding factors for	2(116-119)
		choice of No.of armature slots-slot dimensions-	3(461-466)
20		Tutorial - III	
		Design of Commutator No.of segments-Commutator	1(9.88-95)
21		diameter-	2(151-153)
			3(471-473)
		Design of brushes-dimensions of brushes-	1(9.88-95)
22			2(151-153)
			3(471-473)
23		Variation of output and losses with linear dimensions-	1(6.4-6.18)
Total Periods:	13	Assignment –II-DOS: CIT-I-	
1		UNIT-III-TRANSFORMERS Target Perio	
		Constructional details-emf equation-core/Shell type-single/	1(5.1-5.47)
24		three phase-distribution/power transformer—tappings and	2(215-216)
		tap changing-bushings-transformer oil-conservator and breather-Bucholz relay	3(192-210)
		Design-output equation-single phase-three phase-volt per	1(5.49-54)
25		turn-optimum designs-variation of output and losses of	2(217-222)
		transformer with linear dimensions	3(210-215)
		Design of core-rectangular –square core-stepped core-core	1(5.54-84)
26		area-window space factor-window dimensions-Overall	2(222-227)
27		dimensions-Amorphous cores-	3(215-231)
27		Tutorial - I	1(5.72)
28		Design of shell type Transformer-Problems	1(5.73)
28			$\begin{array}{c} 2(227-241) \\ 3(253-260) \end{array}$
29		Operating characteristics-Leakage reactance of transformer	1(5.85-88)
30		Regulation of transformer-No load current-magnetizing Volt-	1(5.90-5.92)
I		ampere-	1(5.98-102)
31			
31 32		Tutorial - II	
		Temperature rise of transformer-Design of tank with tubes-	1(5.104-
32			1(5.104- 109)

Total Periods:	12	Assignment-III-[DOS: -Test-3:	
	<u> </u>	6	riods: 9+3=12
35		Three phase induction motors-review-comparison of SR & SC Induction motor-Output equation-choice of average flux density and ampere conductors-efficiency and p.fMain dimensions-turns per phase-Number of stator slots-area of	1(10.1-19) 2(273-280) 3(291-313)
		stator slots-lmt efficiency and p.fMain dimensions-turns per phase-	
36		Number of stator slots-area of stator slots-lmt	1/10/10/21)
37		Rotor design-length of air gap-relations for calculation of length of airgap	1(10.19-21) 2(281-283) 3(313-320)
38		Tutorial - I	
39		Design of squirrel cage rotor-number of slots-crawling- cogging-rule for selecting rotor slots-problems	1(10.21-28) 2(283)1
40		Design of rotor bars and slots-rotor bar current-area of rotor bars-shape and size of rotor slots-design of end rings-end ring current-area of end ring-problems.	1(10.28-34) 2(284-286) 3(322-330)
41		Design of wound rotors-number of rotor slots-number of rotor turns-area of rotor conductors-problems.	1(10.34-41) 2(287-289) 3(336-339)
42		Tutorial - II	
43		Operating characteristics-No load current-problems-short circuit current-stator resistance-rotor resistance-problem-	1(10.41-61) 2(289)
44		dispersion co-efficient and its effects-Short Circuit Ratio-D and L for best power factor-problems.	1(10.41-61) 2(289)
45		Tutorial-III-	
46		Magnetic leakage calculations-specific permeance-leakage reactance-various leakage fluxes-UMP	1(3.36-42) 3.72
47 Sem	inar-I	Leakage reactance calculation for induction &synchronous machines-/Semianr-I	1(3.42-45)
Total Periods:	12	CIT-II :	
		UNIT V: SYNCHRONOUS MACHINES Target Period	
48		Type of construction-revolving field-advantages-salient pole, cylindrical rotor-types of synchronous machines-	1(11.1-15) 2(290-293) 3(399-407)
49		prime movers for synchronous generators-run away speed- damper winding-Construction of Turbo alternators	3(399-407)
		damper winding construction of Turbo alternators	
50		Design-output equation-choice of specific magnetic, electric loading-design of salient pole machines-main dimensions-	1(11.15-18)
50 51		Design-output equation-choice of specific magnetic, electric	1(11.15-18)
		Design-output equation-choice of specific magnetic, electric loading-design of salient pole machines-main dimensions- Tutorial-I-Short circuit ratio-effect of SCR on machine performance- length of air gap-shape of pole face-Number of armature	1(11.15-18) 1(11.18-26) 2(293-295) 3(408-411)
51		Design-output equation-choice of specific magnetic, electric loading-design of salient pole machines-main dimensions- Tutorial-I- Short circuit ratio-effect of SCR on machine performance-	1(11.18-26) 2(293-295)
51 52		Design-output equation-choice of specific magnetic, electric loading-design of salient pole machines-main dimensions- Tutorial-I-Short circuit ratio-effect of SCR on machine performance- length of air gap-shape of pole face-Number of armature slots-coil span-turns per phase-conductor sectionshape of pole face-Number of armature slots-coil span-turns	1(11.18-26) 2(293-295)
51 52 53		Design-output equation-choice of specific magnetic, electric loading-design of salient pole machines-main dimensions- Tutorial-I-Short circuit ratio-effect of SCR on machine performance- length of air gap-shape of pole face-Number of armature slots-coil span-turns per phase-conductor sectionshape of pole face-Number of armature slots-coil span-turns per phase-conductor sectionSlot dimensions-length of mean turn-elimination of harmonics-problem.Design of damper winding-problem-height of pole- determination of full load field mmf-design of field	1(11.18-26) 2(293-295) 3(408-411)
51 52 53 54		Design-output equation-choice of specific magnetic, electric loading-design of salient pole machines-main dimensions- Tutorial-I-Short circuit ratio-effect of SCR on machine performance- length of air gap-shape of pole face-Number of armature slots-coil span-turns per phase-conductor sectionshape of pole face-Number of armature slots-coil span-turns per phase-conductor sectionSlot dimensions-length of mean turn-elimination of harmonics-problem.Design of damper winding-problem-height of pole- determination of full load field mmf-design of field winding-	1(11.18-26) 2(293-295) 3(408-411) 1(11.26-41) 1(11.41-51)
51 52 53 54 55		Design-output equation-choice of specific magnetic, electric loading-design of salient pole machines-main dimensions- Tutorial-I-Short circuit ratio-effect of SCR on machine performance- length of air gap-shape of pole face-Number of armature slots-coil span-turns per phase-conductor sectionshape of pole face-Number of armature slots-coil span-turns per phase-conductor sectionSlot dimensions-length of mean turn-elimination of harmonics-problem.Design of damper winding-problem-height of pole- determination of full load field mmf-design of field	1(11.18-26) 2(293-295) 3(408-411) 1(11.26-41) 1(11.41-51) 3(426-435)

59			Beyond subject content: Computer aided design-analysis method-synthesis method-program to design main dimensions of Alternator.	1(22.1-7) 3(553-584)
60			Seminar-II/Quiz	
Total Periods: 12		12	CIT-III :	

Books: Text/Reference:

S.	No	Title of the Book	Author	Publisher	Year
1	T1 (1)	"A Course in Electrical Machine Design"	Sawhney A.K.	Dhanpat Rai & Sons, New Delhi, 1984.	2010
2	T2	"Principles of Electrical Machine Designs with Computer Programmes"	Sen, S.K.	Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi	1987
3	R1	"Electrical Machine Design Data Book"	Shanmuga sundaram.A, Gangadharan.G, Palani.R	New Age Intenational Pvt. Ltd.	2007
4	R2	"Electrical Machine Design"	Balbir Singh,	Brite Publications,Pune	-
5	R3 (2)	A Simplified text in Electrical Machine Design	A.Nagoor Kani	RBA,Chennai,	2010
6	R4 (3)	Principles of Electrical Machine Design	A.K.Agarwal	Kataria&Sons,	2010

STAFF INCHARGE

HOD/EEE

Lecture Schedule

Degree/ Program	:	B.E / Electrical and Electronics Engineering	Course code & Name	:	EE6002- POWER SYSTEM TRANSIENTS (C315E3)
Duration Regulation		Jan - Apr 2016 2013/AUC	Semester Staff handling		VI ; Section : A, B, C A.MARIMUTHU C.MUTHAMIL SELVI

AIM

To review the over voltages (or) surges due to the phenomena of switching operations and lighting discharge. Also to study propagation, reflection and refraction of these surges on the equipments their impact on the power system grid

OBJECTIVE

- 1. To understand the importance of the study of transients.
- 2. To study the generation of switching transients and their control using circuit theoretical concept.
- 3. To study the mechanism of lighting strokes and the production of lighting surges.
- 4. To study the propagation, reflection and refraction of travelling waves.
- 5. To study the impact of voltage transients caused by faults, circuit breaker action, load rejection on integrated power system.

COURSE OUTCOMES: After the course, the student should be able to:

Course	Course Outcomes	POs	PSOs
C315E3.1	Explain the concept of transients and Compute the solution of transient current equation for RL and RLC system.	1,2	2
C215E2.2		107	2.1
C315E3.2	Illustrate the importance of switching transients, Explain the concept of resistance switching, load switching and capacitance switching.	1,2,7	2,1
C315E3.3	Explain the concept of lightning mechanism, Describe the interaction between	1,2,6,7,8	1,1
	lightning and power system		
C315E3.4	Apply the concept of reflection and refraction, Draw the Bewley Lattice diagram for different systems.	1,2,5	1,1
C315E3.5	Explain the concept of transients and Compute the solution of transient current	1,2,5	1,1
	equation for RL and RLC system.		

S.No Date Period No Topics to be Covered			Topics to be Covered	Book No [Page No]
	UNIT I - IN	TRODUC	TION AND SURVEY Target period	ds : 09
1			Review and importance of the study of transients	R2[1.1]
2			Causes for transients.	R2[1.1-1.8]
3			RL circuit transient with sine wave excitation	R2[2.1-2.4]
4			Double frequency transients	R2[2.4-2.8]
5			Basic transforms of the RLC circuit transients	R2[2.4-2.13]
6			Different types of power system transients	R2[1.8-1.11]
7			Effect of transients on power systems	R2[1.11]
8			Role of the study of transients in system planning	R2[1.11-
				1.12]
Total pe		9	Assignment-I-DOS: Test-I :	
	UNIT II - S	WITCHIN	IG TRANSIENTS Target perio	ds: 09
9			Over voltages due to switching transients	R2[3.1-3.3]
10			Resistance switching and the equivalent circuit for interrupting the resistor	R2[2.13-
			current	2.18]
11			Load switching and equivalent circuit, waveforms for transient voltage across	R2[2.18-
			the load and the switch	2.22]
12			Normal and abnormal switching transients	R2[2.22]
13			Current suppression, current chopping effective equivalent circuit.	R2[2.22-
				2.25]
14			Capacitance switching ,effect of source regulation	R2[2.25-
				2.27]

15			Capacitance swit	itching with a restrike, with multiple i	restrikes.	R2[2.27- 2.29]	_
16	1	<u> </u>	Illustration for m	nultiple restriking transients ferro res	sonance	R2[2.29-2	2.33
	l Periods:	9	Assignment –II-			1.22.2	<u></u>
I Uwn-	I trives.			gnment 1 Date of Submission :	<u></u>		
			<u>_</u>				
	UNIT III -	TCHTNI	ING TRANSIENT	ne	Target period	.da •09	
17				neories in the formation of clouds and		R2[3.3-3.	, 61
17	·'	·'		g of thunder clouds	1 Charge Tormation	R2[3.5-3. R2[3.6-3.	
	·'	·'					
19	·	·		ightning discharges	1.11 Jackson	R2[3.8-3.	
20				of lightning strokes, factors contributi	ing to good line design	R2[3.13- 3.16]	
21			Protection using			R2[3.16- 3.20]	
22			Tower footing re	sistance		R2[3.20- 3.24]	
23			Interaction betwe	een lightning and power system	-	R2[3.24- 3.27]	
24	<u> </u>	<u> </u>	Model for lightni	ing stroke		R2[3.27- 3.29]	
Total	l Periods:	9		Assignment-III-[DOS:	-Test-3:	3.27]	
		-		0		~	
	NIT IV - 1K	AVELING		RANSMISSION LINE COMPUTA Target periods:09			
25			distributed lines				-
26	「		Transient respon distributed lines	nse of systems with series and shun	it lumped parameters and	R2[4.10-4	1.15
27	1			concept, step response,		R2[4.15-4	4.24
28	1	<u> </u>	Reflection and r	effaction of travelling waves		R2[4.24-	
<u> </u>	1		Kuncensu			4.37]	
29			Bewely's lattice	diagram		R2[4.37- 4.42]	
30			Standing waves :	and natural frequencies		R2[4.42- 4.56]	
	Semir	nar-I		f transient response of systems with se		4.50j	
			ра	arameters and distributed lines using	MATLAB	+	
	ll Periods:	10		CIT-II :	Terrent		
	<u> 1T V - TRAN</u>	(SIENTS I		D POWER SYSTEM		periods :09	
31	·	·		nd kilometric fault, distribution of vol	Itages in a power system	R2[5.1-5.	
32	·	<u> </u>	Line dropping an			R2[5.7-5.8	
33	ſ'	ſ'		nts on closing and reclosing lines	<u> </u>	R2[5.8-5.	.9]
34		· · · · · · · · · · · · · · · · · · ·	Over voltage ind	duced by faults		R2[5.9-5.	
35	· · ·	· · · · ·		s on integrated system.		R2[5.10-5	
36	1	1		ication of EMTP for transient compu	atation	R2[5.16-5	
37	1		· · · · ·	<i>the Syllabus:</i> Transient analysis usin			<u>. </u>
38	Semin	⊥ nar_∏		transients using MATLAB	ig i bCrib	+	
38 39		<u>al-11</u>	Quiz-I	Tansients using with Line		+	
<u> </u>	·	·	<u>``</u>			+	
		12	Quiz-II				
	l Periods:	13	<u> </u>	CIT-III :			
	BOOKS			· · · · · · · · · · · · · · · · · · ·			
	Title of the B		'	Author	Publisher	!	Ye
Γ1 El	lectrical Tra	Insients in !	Power Systems	Allan Greenwood,	Wiley Interscience, No York, 2nd edition	ew	19
Г2 Е:		Voltage AC	C Transmission	Begamudre.R.D,	Wiley Eastern Limited	4	19
	Engineering	Jilage 110	1141151111551511			1,	1,
	High Voltage	- Engineeri	ino	Naidu.M.S and Kamaraju.V,	Tata McGraw Hill, 2n	ad edition	İ
	Power System	<u> </u>	v	Sivasangari. R,	Anuradha Publications		20
	•			Nagalakshmi.S, Rampriya.S			20
<u></u>	F INCHAR	an				D/EEE	

STAFF INCHARGE

HOD/EEE

K.L.N. COLLEGE OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

EC6651 - COMMUNICATION ENGINEERING [C310]

Important Questions/Assignments/Self study /Seminar topics.

<u>1. COURSE OUTCOMES</u>: After the course, the student should be able to

CO	Course Outcomes	POs	PSOs
C310.1	Explain the operation of Amplitude Modulation , draw the frequency spectrum and vector representation of AM	1,2,3,4,5,7,11	1,2,3
C310.2	Compare the different methods of QPSK, BFSK and GMSK	1,2,3,4,5,6	1,3
C310.3	Analyze how information is transmitted to receiver using the Huffman coding	1,2,3,6,7	1,3
C310.4	Discuss about the various types of multiple access techniques	1,3,4,5,	1,2
C310.5	Distinguish between INTELSAT and INSAT	1,2,3,5,11	1,2

2. Mapping of Course Outcomes (COs), Course (C), Program Specific Outcomes (PSOs) with Program Outcomes. (POs) – before CBS [Levels of correlation:3 (High), 2 (Medium), 1 (low)]

1 Togram Outcomes. (1 Os)			before CDS [Levels of correlation.5 (High), 2 (Meutum), 1 (low)]												
Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C310.1	2	3	1	2	3	-	1	-	-	-	2	-	2	1	1
C310.2	3	2	1	3	1	3	-	-	-	-	-	-	2	-	1
C310.3	3	3	1	-	-	2	3	-	-	-	-	-	2	-	1
C310.4	3	-	1	1	3	-	-	-	-	-	-	-	1	1	-
C310.5	3	1	1	-	3	-	-	-	-	-	1	-	1	1	-
C310	3	2	1	1	2	1	1	-	-	-	1	-	2	1	1

3.PROGRAM OUTCOMES (POs)

Electrical and Electronics Engineering Graduates will be able to:

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO11: Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

S.No.	4. Important Questions.	COs	POs
Q.1.1.	Name the methods used for the suppression of unwanted side band in AM	C310.1	3
	transmission?		

Q.1.2.	Compare the features of FM with AM and also writes its merits and demerits.	C310.1	1,3
Q.1.3.	Explain the operation of SSB transmitter and Receiver.	C310.1	1,2,3
Q.1.4.	How will you generate the FM signal using direct and indirect method?	C310.1	1,3
Q.1.5.	How will you generate the FM signal using Amstrong method?	C310.1	1,3
Q.2.1.	Discuss the process of companding and its characteristics.	C310.2	1
Q.2.2.	How does the Flat top sampling differs from the natural sampling? also discuss	C310.2	1,2
	the filtered output.		
Q.2.3.	Explain the QPSK with block diagram and spectrum also discuss the phasor	C310.2	1,3
	diagram of sinusoids		
Q.2.4.	Explain the operation of QPSK receiver and derive the expression for bit error.	C310.2	1,2,3
Q.2.5.	Explain the working of Delta modulation scheme.	C310.2	1,3
Q.3.1.	Derive the expression for Quantization noise in PCM & DM systems.	C310.3	1,2,3
Q.3.2.	Discuss the Badwidth Trade off of a communication systems.	C310.3	1,2
Q.3.3.	Apply the following coding techniques to obtain the output waveform of bit	C310.3	1,2,3
	stream 10011100 by NRZ, RZ, AMI, HDBP, ABQ, MBnB.		
Q.3.4.	Design a convolution coder of constraint length 6 and rate efficiency 1/2.	C310.3	1,2,3
Q.3.5.	State and prove Shanon noiseless coding theorem.	C310.3	1,2,3,4
Q.3.6.	Discuss the viter bi algorithm by showing the possible paths through the trellis	C310.3	1,2
	of a coder. Assume the state diagram of any coder.		
Q.4.1.	500 users employ FDMA to transmit 1000-bit packets of data. The channel	C310.4	1,2
	bandwidth is 100MHZ and QPSK is used at each of the 500 carrier frequencies		
	employed.		
	What is the maximum bandwidth allocated to each user.		
	What is the bit rate employed by each user?		
	How long does it take to transmit a packet?		
Q.4.2.	Explain TDMA and FDMA systems.	C310.4	1,3
Q.4.3.	Compare wire and wireless communication systems.	C310.4	1
Q.4.4.	Draw a typical TDMA system and explain the operation with its time pattern.	C310.4	1,3
Q.5.1.	Discuss broadly on the multiple access techniques used in satellite	C310.5	1,3
	communications.		

S.No.	4. Important Questions.	COs	POs
Q.5.2.	Describe the following	C310.5	1
	(i) Optical Detectors and their types.		
	(ii) Satellite types		
	(iii) Digital filters used in Satellite systems		
	(iv) Optical Link		
Q.5.3.	 An band transponder of a geo synchronous satellite at height of 35,760 km from the surface of earth and operating at 7.6 GHz has its antenna oriented towards earth station antenna. The input power and directive gain of the transponder antenna are 18 watts and 36dB respectively. Assuming no losses occurs in the down link determine (i) Power received by earth station antenna of aperture diameter and efficiency given as 3m and 62% respectively. (ii) EIRP of the transponder antenna. 	C310.5	1,2,3
Q.5.4.	Write notes on SCADA and Intelsat.	C310.5	1
Q.5.5.	What are the modes of operation suggested in optical fibers and how are the classified according to this?	C310.5	1
	5.Assignments		
A.1.1.	An SSB transmission contains 10kW. This transmission is to be replaced by a	C310.1	1,2
	standard AM signal with the same power content. Determine the power content of		
	the carrier and each of the side bands when the percent modulation is 80%. (Ans.		

	P _C =7.58	kW,								
	$P_{LSB} = P_U$	$J_{SB} = 1.21 \mathrm{kW}$	7)							
A.1.2	An AM t	ransmitter ra	diates 10	kW with	carrier un	modulated	and 11.51	KW, when	C310.1	1,2
		er is modul					•			
	-	nding to 40%	modulati	ion, is tra	nsmitted a	simultaneo	usly. Dete	rmine the		
	total pow									
		$=0.55, P_{\rm T}=$		~ _						
A.1.3		uld you comp	pare the A	M- DSB,	AM-SSB,	VSB, FM	, PM base	d on their	C310.1	1,2
	character									
A.1.4	Explain v	with block dia	agram the	generation	n of analo	og signals i	using MA'	ľLAB.	C310.1	1,2,3,
1.0.1		C1		•	1 0 1	C 11 .			C210.2	4,5
A.2.1.	Apply the	C310.3	1,2,3							
		and also fin		1000000000000000000000000000000000000	ĭ	D (Ans. EII	E	0.03%) F	-	
	Symbols		В	C		D	E	Г		
	Probabili	iti 0.4	0.2	0.12	2	0.08	0.08	0.08		
	es									
A.2.2.	Apply the	e Haffman co	ding proc	edure for	the follow	ving messa	ge ensemb	le and	C310.3	1,2,3
		the efficienc	01				0			
		Symbols	А	В	C	D	E			
		Probabiliti	0.2	0.2	0.2	0.2	0.2			
		es								
A.2.3.	Draw the	various type	s of Line of	coding tec	hniques f	or the data	10011100	11.	C310.3	1,2
A.2.4.		Ild you comp acteristics?	are the va	rious type	s of Line	coding tec	hniques ba	used on	C310.3	1,2

S.No.	5.Assignments	COs	POs
A.3.1.	A digital satellite communication link is to be designed to transmit data at a	C310.5	1,2,3
	1MBps, with overall Eb/No of 14dB. If Eb/No of satellite downlink is 17dB,		
	determine the EIRP required, assuming following parameters for uplink design.		
	(i) uplink path loss = 214dB; (ii) total uplink path loss excluding path loss =		
	2.5dB; (iii) satellite receiver gain = 45 dB; (iv) satellite receiver noise density = -		
	169 dBM/Hz. Assuming uplink frequency of 30GHz, HPA power of 0.5W,		
	determine the earth station antenna size, considering antenna efficiency of 60%		
	also assume negligible losses between HPA to antenna input. (Ans. EIRP =		
	49.5dB , the diameter of the earth station antenna =1.733m)		
A.3.2.	Determine the optical power received in dBm and Watts for a 20km optical	C310.5	1,2
	fiber link with the following parameter: (i) LED output power of 30mW; (ii)		
	four 5km sections of optical cable each a loss of 0.5dB/km; (iii) Three cable to		
	cable connectors with a loss of 2dB each; (iv) no cable splices; (v) light source		
	to fiber interface loss of 1.9 dB; (vi) fiber to light defector loss of 2.1dB; (vii)		
	no loss due to cable bends. (Ans. Transmitted power Pt = 14.77dBm; Total		
	loss = 20dB; Received optical power = 0.3mW)		
	6. Seminar topics		
S.1.1.	Global System for Mobile communication (GSM)	C310.4	1,2,3,4,5,6,7
S.1.2.	Near field communication (NFC)	C310.4	1,2,3,4,5,6,7
S.2.1.	Wireless Fidelity (Wi-Fi)	C310.5	1,2,3,4,5,6,7
S.2.2.	MATLAB applications to Communication systems	C310.5	1,2,3,4,5

K.L.N. College of Engineering

Department of Electrical and Electronics Engineering

EE 6601 - SOLID STATE DRIVES [C311]

Important Questions/Assignments/Self study /Seminar topics.

1.Course outcomes

Course	Course outcomes	POs				
C311.1	Classify the various types of drives and load torque characteristics and Apply the multi	1				
	quadrant dynamics in hoist load system.					
C311.2	Analyze the operation of steady state analysis of single phase and three phase fully	1,2,3,4				
	controlled converter and Chopper fed separately excited dc motor drives and discuss the					
	various control strategies of converter.					
C311.3	Explain the operation and characteristics of various methods of solid state speed control	1,2				
	of induction motor.					
C311.4	Describe the operation of various modes of V/f control of synchronous motor drives and	1				
	different types of permanent magnet synchronous motor drives.					
C311.5	Design a current and speed controller and develop the transfer function for DC motor, load	1,2,3,4				
	and converter, closed loop control with current and speed feedback.					
2. Mapping of Course Outcomes (COs), Course (C), Program Specific Outcomes (PSOs) with						
Pr	ogram Outcomes (POs) – before CBS[Levels of correlation•3(High) 2(Medium) 1(low)					

1	1 logram Outcomes. (1 Os) – before CDS[Levels of correlation.3(11gn),2(wethum),1(low).														
Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C311.1	3	-	-	-	-	-	-	-	-	-	-	-	1	-	-
C311.2	3	2	1	3	-	-	-	-	-	-	-	-	3	-	-
C311.3	3	1	-	-	-	-	-	-	-	-	-	-	1	-	-
C311.4	3	-	-	-	-	-	-	-	-	-	-	-	1	-	-
C311.5	3	2	1	2	-	-	-	-	-	-	-	-	2	-	-
C311	3	1	-	1	-	-	-	-	-	-	-	-	2	-	-

3.PROGRAM OUTCOMES (POs)

Electrical and Electronics Engineering Graduates will be able to:

PO1: Engineering knowledge:

Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Problem analysis:

Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions:

Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: Conduct investigations of complex problems:

Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

S.No.	4. Important Questions.	COs	POs
Q.1.1.	State the essential parts of electric drive and classify it. Explain its function	C311.1	1
Q.1.2.	Derive the mathematical condition for steady state stability of equilibrium point.	C311.1	1,2
Q.1.3.	Explain in detail the multi quadrant dynamics in the speed-torque plane.	C311.1	1,2
Q.1.4.	Explain the different modes of operation of an electrical drive.	C311.1	1
Q.1.5.	A motor having a suitable control circuit develops a torque given by the relation Tm=	C311.1	1,2,3
	$p\omega + q$ where p and q are positive constants. The motor is used to drive a load whose		, ,
	torque is expressed as $TL = r\omega^2 + s$ where r and s are positive constants. The total		
	inertia of the rotating masses is J. i) Determine the relation among p, q, r and s in order		
	that the motor can start together with the load and have an equilibrium operating speed.		
	ii) Calculate the equilibrium operating speed.		
Q.1.6.	Derive the expressions to find the equivalent load torque and equivalent inertia of loads	C311.1	1
	in Translational and Rotational motion.		
Q.1.7.	Draw and describe the load torque characteristics of various drives.	C311.1	1
Q.2.1.	Describe in detail about the braking of DC and AC drives.	C311.2	1
Q2.2.	Explain in detail the operation and steady state analysis of single phase fully controlled	C311.2	1,2
0.00	converter fed dc drive with neat waveforms in continuous and discontinuous modes.	<u> </u>	1.0
Q.2.3.	Explain the discontinuous modes of operation fully controlled converter fed separately	C311.2	1,2
	excited dc motor in detail with necessary waveforms and equations.	0211.2	1.0
Q2.4.	A 250V separately excited dc motor has an armature resistance of 2.5 Ω when driving a	C311.2	1,2
	load at 600 r.p.m. with constant torque, the armature takes 20 A. This motor is		
	controlled by a chopper circuit with a frequency of 400 Hz and an input voltage of 250 V. (i) What should be the value of the duty ratio if one desires to reduce the speed from		
	600 to 540 r.p.m. with the load torque maintained constant. (ii) Find out the value of		
	duty ratio for which the per unit ripple current will be maximum		
Q.2.5.	A 200 V, 875 rpm, 150 A separately excited dc motor has an armature resistance of	C311.2	1,2
Q.2.3.	0.06Ω . It is fed from a single phase fully controlled rectifier with an ac source of 220	0511.2	1,2
	V, 50 Hz. Assuming continuous conduction, calculate the firing angle for rated motor		
	torque and 750 rpm.		
Q.2.6.	Explain with the circuit diagrams and waveform the operation of a three phase fully	C311.2	1,2
_	controlled converter fed separately excited dc motor		
Q.3.1.	Explain the stator voltage control of induction motor.	C311.3	1
Q.3.2.	Explain in detail with suitable diagrams and waveforms the v/f control applied to	C311.3	1,2
	induction motor drives		
Q.3.3.	Explain with a neat diagram the field weakening mode control of induction motor	C311.3	1
	drives		
Q.3.4.	Explain the closed loop control of CSI fed induction motor drives	C311.3	1,2
Q.3.5.	Describe with a neat diagram the working of a current fed inverter for an induction motor	C311.3	1,2
Q.3.6.	Draw and explain the speed torque characteristics of induction motor.	C311.3	1
Q.4.1.	Explain the open loop v/f control of synchronous motor in detail	C311.4	1,2
Q.4.2.	Write short notes on permanent magnet synchronous motor	C311.4	1,2,3
Q.4.3.	Explain the self controlled mode of operation of synchronous motor	C311.4	1,2
Q.4.4.	Explain power factor control of synchronous motor with relevant vector diagram	C311.4	1
Q.4.5.	Describe the constant margin angle control and power factor control of synchronous	C311.4	1
Q.4.6.	motor drives. A 3 phase, 400V, 50Hz,6 pole star connected round rotor synchronous motor has	C311.4	1,2
Q.4.0.	$Z_s=0+j2\Omega$ Load torque proportional to speed squared is 340Nm at rated synchronous	C311.4	1,2
	speed. The speed of the motor is lowered by keeping v/f constant and maintaining		
	unity pf by field control of the motor. For the motor operation at 600rpm, calculate a)		
	supply voltage)armature current c) excitation angle d) load angle e) pull out torque.		
	Neglect rotational losses.		
Q.5.1.	Derive the closed loop transfer function of converter fed separately excited DC motor.	C311.5	1,2
Q.5.2.	Derive the transfer function of armature controlled DC motor	C311.5	1,2,3
	K.L.N.C.E./EEE/HAND BOOK/2015-2016/EVEN/VI SEN		

Q.5.3.	Explain the closed loop operation of armature voltage control method with field weakening mode control in detail	C311.5	1,2,3
Q.5.4.	Explain the design procedure of current controller in detail	C311.5	1,2
Q.5.5.	Describe the design of speed controller with necessary diagrams	C311.5	1,2
Q.5.6.	Describe the various closed loop configurations applied in electrical drives	C311.5	1,2
Q.5.7.	Design the following controllers	C311.	1,2,3
	i)Current controller		
	ii)Speed controller		
Q.5.8.	Explain in detail about converter selection and characteristics	C311.5	1
Q.5.9.	A 50 KW, 240V,1700 rpm separately excited DC motor is controlled by a converter.	C311.5	1,2,3
	The field current is maintained at If=1.4A and the machine back EMF constant is		
	Kv=.91 VA rad/sec. The armature resistance is Rm=0.1 Ω and the viscous friction		
	constant is $B=0.3Nm/rad/sec$. The amplification of the speed sensor is K1=95 mV/rad/sec and the gain of the power controller is K2=100		
	i)Determine the reference voltage Vr to drive the motor at the rated speed		
	ii)If the reference voltage is kept unchanged, determine the speed at which the motor		
	develops rated torque.		
	5. Assignments/Seminar/Self study topics.		
A.1.1.	A drive has following equations for motor and load torques:	C311.1	1
	$T = (1 + 2\omega_m)$ and $T_1 = 3\sqrt{\omega_m}$		
	Obtain the equilibrium points and determine their steady-state stability		
A.1.2.	Obtain the equilibrium points and determine their steady-state stability when motor and	C311.1	1
	load Torques is: $T = -1 - 2\omega_m$ and $T_l = -3\sqrt{\omega_m}$	001111	-
A.1.3.	Compare electrical and mechanical braking	C311.1	1
A.1.4.	Explain the methods of plugging and rheostatic braking as applied to dc motors and	C311.1	1
A.1.5.	induction motors	C311.1	1,2
A.1.3.	Explain how an induction motor is brought to stop by (1) plugging and (2) dynamic braking	C311.1	1,2
A.2.1.	A 220V, 1500 rpm, 10A separately excited dc motor is fed from a single-phase fully-	C311.2	1,2,3
11.2.11	controlled rectifier with an ac source voltage of 230V, 50Hz. $R_a=2\Omega$. Conduction can	001112	1,2,0
	be assumed to be continuous. Calculate firing angles for,		
	(a.)Half the rated motor torque and 500rom.		
	(b) Rated motor torque and (-1000) rpm.		
A.2.2.	A 220V, 1200rpm, 15A separately excited motor has armature resistance and	C311.2	1,2,3,4
	inductance of 1.8Ω 32mH respectively. This motor is controlled by a single-phase fully- controlled rectifier with an ac source voltage 0f 230V, 50Hz.		
	Identify the modes and calculate developed torques For: (a) $\alpha = 60^{\circ}$ and speed = 450 rpm		
	(b) $\alpha = 60^{\circ}$ and speed = 1500 rpm		
A.2.3.	A 220V, 750 rpm, 200A separately excited motor has an armature resistance of 0.05 Ω .	C311.2	1,2,3,4
	armature is fed from a three-phase non-circulating current dual converter consisting of		
	fully- controlled rectifiers A and B. Rectifier A provides motoring operation in the		
	forward direction and rectifier B in reverse direction. Line voltage of ac source is		
	400V. Calculate firing angles of rectifiers for the following assuming continuous		
	conduction. (a) Motoring operation at rated torque and 600 rpm. (b)Regenerative braking operation at rated torque and 600 rpm		
A.2.4.	A 220V, 24A, 100 rpm, separately excited dc motor has an armature resistance of 2Ω .	C311.2	1,2,3
	Motor is controlled by a chopper with frequently of 500Hz and source voltage of 230V.		-,_,_
	Calculate the Duty ratio for 1.2 times rated torque and 500 rpm		
A.2.5.	A 230V separately excited dc motor takes 50A at a speed of 800 rpm. It has armature	C311.2	1,2,3,4
	resistance of 0.4 Ω . This motor is controlled by a chopper with an input voltage of 230V		
	and frequency of 500Hz. Assuming continuous conduction throughout, calculate the		
	plot speed-torque characteristics for:		
	K L N C E /EEE/HAND BOOK/2015-2016/EVEN/VI SEN	1/D IDD 10	

	(a)Motoring operation at duty ratios of 0.3 and 0.6.		
	(b)Regenerative braking operation at duty ratios of 0.7 and 0.4		
A.3.1.	Describe the principle and operation of constant air gap flux control in detail	C311.3	1,2
A.3.2.	Draw and explain the various modes(variation of torque, power Limitations and high speed modes) of operation of induction motor	C311.3	1,2
A.3.3.	Describe in detail closed loop speed control of VSI drive and CSI drive	C311.3	1
A.3.4.	Compare VSI and CSI drives	C311.3	1
A.4.1.	Describe using a diagram the construction of a trapezoidal surface mounted permanent magnet synchronous motor, draw and explain the stator voltage & current waveform	C311.4	1
Sem.1.1.	Current status of AC and DC drives	C311.1	1
Sem.2.1.	Semiconductor converter controlled drives	C311.2	1
Sem.3.1.	Linear induction motors and its control	C311.3	1
Sem.4.1.	Poly-phase AC motors for traction drives	C311.4	1
Sem.5.1.	Closed loop speed control of multi motor drive	C311.5	1,2
Self.1.1.	PLL control of electric drives(one page-self study)	C311.1	1,2
Self.3.1.	Induction motor analysis and performance(one page-self study)	C311.3	1
Self.5.1.	Closed loop position control(one page-self study)	C311.5	1,2
		<u> </u>	

K.L.N. College of Engineering Department of Electrical and Electronics Engineering <u>EE6602-EMBEDDED SYSTEMS</u> [C312]

Important Questions/Tutorials/Assignments/Self study /Seminar topics.

	1.Course outcomes	
Course	Course outcomes	POs
C312.1	Analyze the basic build process of embedded systems, structural units in embedded	1,2,4,5
	processor and selection of processor and memory devices depending upon the	
	applications.	
C312.2	Classify the types of I/O device ports and buses and different interfaces for data transfer.	1,2,3,5
C312.3	Modeling of the Embedded Product Development Life Cycle (EDLC) by using different	1,2,3,4,5,6
	techniques like state machine model, sequential program model and concurrent model	
C312.4	Analyze about the basic concept of Real Time Operating Systems and plan to scheduling	1,2,3,5,6
	of different task and compare the features of different types of Real Time Operating	
	Systems	
C312.5	Apply the knowledge of programming concepts of Embedded Systems for various	1,2,3,5,6,7
	applications like Washing Machine automotive and Smart Card System applications	
2.	Mapping of Course Outcomes (COs), Course (C), Program Specific Outcomes (PSOs) with	
Pr	ogram Outcomes. (POs) – before CBS[Levels of correlation:3(High),2(Medium),1(low).	
Course	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01	PSO2 PSO3

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C312.1	2	1	-	1	1	-	-	-	-	-	-	-	1	-	-
C312.2	2	1	-	2	1	-	-	-	-	-	-	-	1	-	-
C312.3	2	1	2	2	1	1	-	-	-	-	-	-	2	-	-
C312.4	2	1	1	-	1	1	-	-	-		-	-	1	-	-
C312.5	2	1	2	-	1	1	1	-	-	-	-	-	1	-	-
C312	2	1	1	1	1	-	-	-	-	-	-	-	1	-	-

s3.PROGRAM OUTCOMES (POs)

Electrical and Electronics Engineering Graduates will be able to:

PO1: Engineering knowledge:

Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Problem analysis:

Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions:

Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: Conduct investigations of complex problems:

Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: Modern tool usage:

Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6: The engineer and society:

Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: Environment and sustainability:

Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

S.No.	4. Important Questions.	COs	POs
Q.1.1.	List the Hardware units that must be present in the embedded systems	C312.1	1,3
Q.1.2.	Why do you need at least one timer device in an embedded systems	C312.1	2
Q.1.3.	Define timer .Analyze a counter following performance (a) timer function (b) prefixed	C312.1	2
	time initiated events generation(c) Time capture function.		
Q.1.4.	Analyze the performance of DMA controller and explain the mode of data transfer.	C312.1	1,2
Q.1.5.	Why should a program be divided into functions and each placed in different memory	C312.1	3
	blocks or segments?		
Q.1.6.	How to solve the critical problems used by watch dog timer with suitable example.	C312.1	2
Q.1.7.	How to test your application by using in circuit emulator.	C312.1	2
Q.1.8.	Analyze the mode of timer.	C312.1	4
Q.1.9.	Differentiate general purpose computers & embedded systems	C312.1	1,2
Q.1.10.	Explain the top down approach of building embedded systems	C312.1	1
Q.2.1.	Explain the classification of I/O devices	C312.2	2
Q2.2.	Explain use of each control bit of I2C bus protocol	C312.2	2
Q.2.3.	Compare advantages and disadvantages of data transfer using serial and parallel ports or	C312.2	2
-	devices		
Q2.4.	What do you meant by buses for networking of serial devices and parallel devices?	C312.2	5
Q.2.5.	What are the serial bus communication protocols? Explain any two of them.	C312.2	5
Q.2.6	What are the factors which supports the devices driver requirement?	C312.2	1,2
Q.3.1.	What is EDLC?Why EDLC is essential in embedded production development	C312.3	1,2
Q.3.2.	Explain the different life cycle models adopted in embedded product development	C312.3	1,2,5
Q.3.3.	What are the challenges in product integration and how to test the product	C312.3	1,2
Q.3.4.	How the performance tool helps in analyzing the performance of the system.	C312.3	1,2
Q.3.5.	What are the UML diagrams involved in conceptual design?	C312.3	1,3
Q.4.1.	What should be the goal of an OS?	C312.4	1,5
Q.4.2	When do you use cooperative scheduling and When preemptive?	C312.4	2
Q.4.3	Compare V _x works,µ/OS-II,RI Linux	C312.4	2,5
Q.4.4	List ten examples, each of applications of semaphore, mailbox and message queue.	C312.4	2,5
Q.4.5	How do you initiate preemptive scheduling and assign priorities to the tasks for	C312.4	3
	scheduling? Give ten example of the need for preemptive scheduling.		
Q.4.6	Explain the strategies to achieve synchronization between two processes.	C312.4	5
Q.4.7	Write notes on multiprocessing and multi tasking.	C312.4	2
Q.4.8	How to calculate the deadline for periodic and a periodic processes?	C312.4	2
Q.4.9	Write about priorities and vectors.	C312.4	2
Q.4.10	What is blocking and non blocking communication?	C312.4	1,2
Q.5.1	Briefly explain the various embedded system application developments in real time.	C312.5	1,6,7
Q.5.2	Describe the design of smart card	C312.5	1,2,3
Q.5.3	With neat sketch explain the mechanism involved in washing machine control.	C312.5	1,2,3
Q.5.4	Explain the case study of automotive application.	C312.5	1,2,3
Q.5.5	Discuss the list of task function and IPCS in automotive applications	C312.5	1,2
A.1.1.	1. Classify the embedded system based on applications.	C312.1	1,2,3,5
	2. How to select microcontrollers and memories for your own designing applications		-,_,_,_,_
	with example		
A.2.1.	1.List out the I/O devices and how to interface I/O devices with micro controller?	C312.2	1,2,3
	2.Explain interfacing sensors by using SPI with any one example.		-,-,0
A.3.1.	1. Discuss about the issues in hardware and software co-design with any one example.	C312.	1,2,3
	2.Explain about the advantages of Object Oriented Model for embedded development		
	environment		
			i

K.L.N. College of Engineering

Department of Electrical and Electronics Engineering

EE 6603- POWER SYSTEM OPERATION AND CONTROL [C313]

Important Questions/Tutorials/Assignments/Self-study/Seminar topics

1. Course outcomes*

POs	Course
1,2,5	C313.1 Ana
1,2,3,4,5	C313.2 Des (K3
1,2,3,4,5	C313.3 Exp
1,2,3,4,5	C313.4 Sol
1,2,5	C313.5 Exp
	C313.5 Exp

2. Mapping of Course Outcomes (COs), Course (C), Program Specific Outcomes (PSOs) with Program Outcomes (POs) – before CPSU evels of correlation 2(Uigh) 2(Medium) 1(lew)

P	rogran	n Outco	omes. (l	POs) –	before	CBS[L	evels o	f corre	lation:3	B(High),2	2(Mediu	m),1(low	v).		
Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C313.1	3	2	-	-	1	-	-	-	-	-	-	-	1	-	-
C313.2	3	2	1	2	1	-	-	-	-	_	-	-	2	-	_
C313.3	3	2	1	2	1	-	-	-	-	-	-	-	2	-	-
C313.4	3	2	1	2	1	-	-	-	-	-	-	-	2	-	-
C313.5	1	2	-	-	1	-	-	-	-	-	_	_	1	-	-
C313	3	2	1	2	1	-	-	-	-	_	_	-	2	-	_

3.PROGRAM OUTCOMES (POs)

Electrical and Electronics Engineering Graduates will be able to:

PO1: Engineering knowledge:

Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Problem analysis:

Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions:

Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: Conduct investigations of complex problems:

Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: Modern tool usage:

Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

S.No.	4. Important Questions.	COs	POs
Q.1.1.	A generating station has maximum demand of 400 MW. The annual load factor is 65% and capacity factor is 50% find the reserve capacity of the plant.	C313.1	1,2
Q.1.2.	(i)Discuss about the recent trends in real time control of power systems.(ii) Write short notes on load forecasting.	C313.1	1,2
Q.1.3.	Explain the term Installed reserve, Hot reserve and cold reserve.	C313.1	1,2
Q.1.4.	Explain the need for voltage and frequency regulation in power system	C313.1	1,2

Q.1.5.	Define(i)Load Curve (ii)Daily Load Curve (iii)Monthly Load curve (iv)Annual Load	C313.1	1,2
Q.1.J.	Curve (v)Load Duration Curve, Write the formula of (i)Demand Factor (ii)Load	C315.1	1,2
016	Factor (iii)Diversity Factor (iv)Plant use Factor	C212.1	1.2
Q.1.6.	Differentiate between load curve and load duration curve with suitable example.	C313.1	1,2
Q.2.1.	Derive the expression of Speed-Load characteristics sharing of load between two synchronous machine.	C313.2	1,2
Q2.2.	Derive and explain the concept of two area load frequency control system modeling with necessary diagram.	C313.2	1,2
Q.2.3.	Draw and explain the concept of fundamentals of speed governing mechanism and	C313.2	1,2
	derive the following(i)Model of Speed Governor (ii)Turbine Model (iii)Generator		,
	Load Model (iv)Model of Load frequency control of a single area system		
Q2.4.	Draw the necessary block diagram and derive the expression of dynamic analysis of uncontrolled case.	C313.2	1,2,3
Q.2.5.	Explain integral control of single area system for uncontrolled case (i)Static analysis (ii)dynamic analysis	C313.2	1,2
Q.2.6.	Derive and explain the concept of two area load frequency control system modeling	C313.2	1,2,3
Q.2.0.	with necessary diagram.	C313.2	1,2,3
Q.3.1.	Explain the functions of Excitation system and also explain any two types of	C313.3	1,2
Q.J.1.	excitation system with neat block diagram.	C315.5	1,2
Q.3.2.	Explain typical excitation system or Typical brushless Automatic Voltage Regulator.	C313.3	1,2
Q.3.3.	Explain typical excitation system of Typical brusiness Automatic Voltage Regulator.	C313.3	1,2
		C313.3	
Q.3.4.	Derive and justify the static and dynamic analysis of Automatic Voltage Regulator loop.		1,2.,3
Q.3.5.	Explain the concept of tap chancing transformer with its type.	C313.3	1
Q.3.6.	i)Discuss in brief about generation and absorption of reactive power.	C313.3	1,2,3
	(ii) Derive the relations between voltage, power and reactive power at a node		
	for applications in power system control.		
Q.4.1.	State Unit Commitment problem – Define spinning reserve, thermal unit constraints,	C313.4	1,2
	hydro constraints, fuel constraints and other constraints.		
Q.4.2.	Derive coordination equation for with loss and without loss in Economic dispatch method.	C313.4	1,2,3.
Q.4.3.	Explain the concept of dynamic programming method with flow chart and also	C313.4	1,2
	explain its type.		
Q.4.4.	Draw the flow chart for λ -iteration method.	C313.4	1,2,3.
Q.4.5.	(i) Explain the unit commitment problem using priority ordering load dispatch.(ii) Explain the term 'Incremental Operating Cost' of power system related with economic dispatch	C313.4	1,2
Q.4.6.	The input output curve characteristics of three units are $F1=940+5.46PG1+0.0016PG1^2$ $F2=820+5.35PG2+0.0019PG2^2$	C313.4	1,2,3.
	F2=820+5.35FG2+0.0019FG2 $F3=99+5.65PG3+0.0032PG3^2$. Total load 600MW.		
	Use the participating factor method to calculate dispatch for a load is reduced to 550MW		
Q.5.1.	Explain the hardware components and fundamentals of SCADA using a fundamental block diagram.	C313.5	1,2
Q5.2.	Explain the Energy Control Centre function using SCADA.	C313.5	1,2
Q.5.3.	Define State Estimation and explain the classifications of state estimation	C313.5	1,2
Q.5.4.	List the various contingencies that are generally considered for steady sate security	C313.5	1,2
	analysis. Explain the major functions of system security control		
Q.5.5.	Explain various state transitions and control strategies using state transition diagram.	C313.5	1,2
<u> </u>	5. Tutorial Questions.	1	
T.1.1.	i)Explain about the over view of power system operation.	C313.1	1,2,3
1.1.1.	ii) A generating station has the following daily load cycle	C313.1	1,2,3
	K L N C E /EEE/HAND BOOK/2015-2016/EVEN/VI SE		

	Time(hr)	0-6 6	5-10	10-12	12-16	16-20		20-24		
	Load(MW)		25	30	25	35		20		
	` /	load duration	curve b)Maximum	demand((ans-35KW))			
	c)Units gener	rated per day(a		,		load(ans 250		(W)		
	e)Load factor	(ans 71.43%)			-					
T.1.2.		on has to meet		0	nd				C313.1	1,2,3
	-	KW between 8								
	-	KW between 6								
	-	KW between 6								
	-	KW between 1			\mathbf{P} . M to 6.	A.M				
	•	load curve and			1 (4 < 0.01 1 .)				
	· ·	$\cot(ans 1.286)$	11)units ge	enerated per	day(ans	4600kwhr)				
TT 1 2	iii)load factor			damand of	201411	a load footo		$\frac{600}{2}$ a mlamb	0212.1	1.0.2
T.1.3.		station has a i					or of	60%,a plant	C313.1	1,2,3
		or of 48% and nergy produced			50%.calct	nate				
	· / ·	e capacity of the	•		C					
		num energy th				he nlant wa	as riir	ning all the		
	time(ans-480		ui coulu l			ine plant we	10 I UI	ning an the		
		num energy th	at could l	be produced	d daily if	the plant w	vas ri	inning fully		
		perating as per		-	-	nie prone n				
T.1.4.		method of cor				ve using a	load	curve. The	C313.1	1,2,3
		a were collect								y y-
	year			5		1	2	e		
	-		Load in	ı KW	Du	ration hours	5			
			15000		87					
			12000 a	and over	876	5				
			10000 a	and over	175	52				
			8000 ar	nd over	265	58				
			6000 ar	nd over	438					
			4000 ar		700					
			2000 ar		876					
		annual load c	luration c	urve and fin	nd the loa	ad factor of	the s	system.(ans-		
T 0 1	6.8)	1	C.	1.1	. 1 .				G212.2	1.0.0
T.2.1.		the two areas							C313.2	1,2,3
	system.	for a load cha	nge of are	ea 2 by 100	JMW, AS	sume tonov	wing	data for the		
		area 1 Pr1	-10001	MWCanacit	v of Area	$2 Pr^2$	-200	0MW		
	1 ·	ad of area $1,P_{I}$		-	•					
		of area 1, R_1		egulation of			100	0 111 11		
		requency F^0	=50 Hz		,					
		s each percent		n frequency	causes 1	% change i	n loa	d. Find also		
		f additional fr	0			0				
	reasons.		- •	-						
	(ans-steady s	tate value red	uced to a	value of	49.9029H	Iz and addi	itiona	l frequency		
	drop is 0.027	,								
T.2.2.		interconnecte			0				C313.2	1,2,3
	-	to 0.1pu. The		-						
		u. Assume the	-		-			-		
		stem frequen	cy and th	he steady	state flow	w over the	tie-l	ine for the		
	following situ	lations.								
	Lood Chara	a of ONANY in	Total C	onocity of	0#001	Total Car -		of orce?		
		e of 20MW in	Total	apacity of	arear	Total Capa	ienty (or areaz		
	area					2008/2015	0010			<u> </u>

	1	1000MW	1000MW		
	1	1500MW	500MW		
	2	1500MW	500MW		
	$(case I \Delta Ptie1 = -10 MW, case)$	I ΔPtie1=-4.875MW,case II	I Δ Ptie1=-5MW)		
T.2.3.	Two power systems A and frequency constants Ka and	B are interconnected by Kb MW/Hz. An increase in MW from B to A,when the n B is 50Hz.Determine the va	a tie-line and have power- load of 500MW on system A e line is opened frequency of	C313.2	1,2,3
T.2.4.	For the uncontrolled two- are	ea system estimate the oscilla	ating frequency of the system	C313.2	1,2,3
	electrical load. Parameters fo Incremental Regul Inertia Constant H Tie line operating	by the two identical areas are ation R =250 Hz/p.u MW =5 secsDamping C power angle, δ_{10} - δ_{20} =45 ⁰ = 10% of area capacity.	0		
T.2.5.	103% from full load to no le alternators share a load of 10 any portion of the load. (ans PG1=464.28KW,PG2=5	bad and that of other is 1009 000KW and at what load will 535.7KW,cease supply 187.5		C313.2	1,2,3
T.3.1.	may be carried out economi KVA+Rs.0.10 per KWH, c	cally. It is given that tariff for our of installing compensati depreciation on installation of the second	tor upto which improvement or the consumer is Rs.80 per ng equipment is Rs.350 per f compensating equipment is	C313.3	1,2,3
Т.3.2.	0.8 lagging, at a line voltage receiving end and the volta	e of 33KV.A synchronous c ge at the both ends of the compensator. The line has re eutral)200hm per phase.	line is 25MW, power factor ompensator is situated at the line is maintained at 33KV. esistance 50hm per phase and	C313.3	1,2,3
T.3.3.	A three phase induction mot power factor being 0.76 consumption of 100KW is c	or delivers 500 HP at an effi lagging. A loaded synchro connected in parallel with th operating power factor of t utility.	ciency of 0.91, the operating mous motor with a power e induction motor. Calculate he synchronous motor if the motor-364.5KVA)	C313.3	1,2,3
Т.3.4.	is maintain at a nominal 2 transformer(0.1 p.u reactance is nominally at 132KV line of KV and is connected to M 132KV line of 500hm reacta (ans-Natural voltage dro drop=38MVAR)	275KV and is connected to e) and a 132 KV line of react of 50 ohm reactance. Supply by a275/132 KV transformence. p at M=5KV,reactive p	on busbar M. Supply point A M through a 275/132 KV tance 500hm .Supply point B y point C is nominally at 275 ers(0.1 p.u. reactance) and a power injected to offset	C313.3	1,2,3
T.3.5.	At a particular node of the p	amount of MVAR to be injuction current at that node is about		C313.3	1,2,3
T.4.1.	The incremental cost charact IC1=0.02P1+22 Rs/I IC2=0.04P2+20 Rs/I	eristics of the plants are Mwhr		C313.4	1,2,3
L			BOOK/2015-2016/EVEN/VI SE	1	

	The system load is entirely co					
	to plant 2 the transmission		•	em compute		
	optimum scheduling for a tota	l received power of 150	MW.			
	(ans λ -25.75,P1=38.56MW,P2	2-143.75MW,P3=2.23N	IW)			
T.4.2.	The input output curve charac				C313.4	1,2,3
	$F1:750+6.49P_{G1}+0.0035P_{G1}^{2}F$	2: 870+5.75P _{G1} +0.0015	$5P_{G1}^{2}$			
	F3: $620+8.56P_{G1}+0.001P_{G1}^{2}$					
	The fuel cost of unit 1 is 1Rs	s/MBtu for unit 2 and 2	Rs/MBtu for unit3.7	Fotal load is		
	800MW.Use the participatio	n factor method to ca	lculate the dispatch	of load is		
	increased to 880MW.		1			
	$(ans-P_{new,1} = 394.17MW, P_{new,3})$	$_{2}=331.04$ MW. $P_{new 3}=1.5$	54.076MW)			
T.4.3.	A power plant has three units				C313.4	1,2,3
	$C_1 = 0.02 P_1^2 + 1.95 P_1$		-1			-,-,-
	$C_2 = 0.015 P_2^2 + 2.10 P_2^2$					
	$C_3 = 0.005 P_3^2 + 2.201$					
	Find the optimum scheduling	-	MW			
	(ans- P1=52.126MW,P2-64.30					
T.4.4.	The incremental cost curve of				C313 /	1,2,3
1.7.7.	P1 = -150 + 50(IC) - 2(IC)				C313.4 C313.4 t C313.1 y e d s e C313.1	1,2,5
	$P2=-100+50(IC)-2(IC)^{2}$)				
	P3 = -150 + 50(IC) - 2(IC)	$)^2$				
	Where IC=dFi/dPi; Rs/Mwh	i=1,2,3				
	The total demand at a certain		uals 200MW. find th	he ontimum		
	allocation of load between thr			ne optimum		
	(ans λ -5,P1=50MW,P2-100M	e	n method.			
T.4.5.	A Power plant has 3 units with		ristics		C313 A	1,2,3
1.7.5.	$F_1 = 0.05P_1^2 + 21.5 P_1$		1151105		С515.т	1,2,5
	$F_2 = 0.10 P_2^2 + 27 P_2 + 500$					
	$F_{3} = 0.07 P_{3}^{2} + 16 P_{3} + 900$					
	Pmax=120MW,Pmin=39MW					
	(ans-P1=71MW,P2=39MW,P					
		signments/Seminar/Se	If study tonics			
A.1.1.	A Power station has a maxim			70% a nlant	C313.1	1,2,3
11.1.1.	capacity factor of 52.5% ar			-	0.515.1	1,2,5
	produced,(b)the reserve capacity	-	. ,			
	produced daily if the plant we					
	be produced daily if the plan					
	fully loaded when in operation		ance with operating	schedule, 15		
A.1.2.	Explain the method of const		ourve using a load	ourve The	C212.1	1,2,3
A.1.2.	following data were collected				C315.1	1,2,5
	year	The daily load cu	ives of a power syst	cin during a		
		Load in KW	Duration hours			
	-	15000	87			
		12000 and over	876			
		10000 and over	1752			
		8000 and over	2658			
		6000 and over	4380			
		4000 and over	7000			
		2000 and over	8760			
	Construct the annual load dura			stem.		
A.1.3.	A diesel station supplies the fo	ollowing loads to variou	is consumer		C313.1	1,2,3
	Industrial load=1500KW					
	Commercial load=750KW					
	Domestic Power=100KW					
		K L N C E /FFF/HA	ND BOOK/2015-2016	FVFN/VI SF	M/R IPP 4	8

	Domestic light=450KW		
	If the maximum demand on the station is 2500KW and the number of KWhr		
	generated per annum is 45×10^5 , determine the diversity factor and annual load factor.		
A.2.1.	Two identical synchronous machine of rating 100MW,50Hz operating in parallel have the following characteristics	C313.2	1,2,3,4
	Machine 1:speed droop is 4%, speed changer set to give 50% rated load at rated speed.		
	Machine 2: speed droop is 4%, speed changer set to give 75% rated load at rated		
	speed.		
	(a)Determine the load taken by each machine for a total load of 150MWand the		
	frequency of operation.		
	(b)Conclude about the adjustments to be made by the speed changers of the machines		
	to share the load as in(a)but with a frequency of 50Hz.		
A.2.2.	Two generators rated at 150MW and 250MW are operating in parallel. The governor	C313.2	1,2,3
	settings on the machines are such that they have 4 percent and 3 percent drops.		
	Determine (i)the load taken by each machine for a total load of 200MW (ii)The		
	percentage no load and rated output of machine 1 to be made by the speeder motor if		
	the machines are to share the load equally.(iii)Rated output of machine 1.		
A.2.3.	Two 1000KW alternators operate in parallel. The speed regulation of 1 set is 100% to	C313.2	1,2,3
	104% from full load to no load and that of other is 100% to 105%. How will the two		
	alternators share a load of 1200KW and at what load will one machine cease to supply		
	any portion of the load.		
A.4.1.	There are 3 thermal generating units which can be committed to take the system load	C313.4	1,2,3,4
	of 800 MW. The fuel cost data and generation operating limit data are given below.		
	With the data provided, analyze the optimum unit committed using brute force		
	enumeration technique.		
	$F_1 = 0.006P_1^2 + 7P_1 + 600$ $100 \le P_1 \le 600$		
	$F_2 = 0.01 P_2^2 + 8 P_2 + 400 \qquad 50 \le P_2 \le 300$		
	$\frac{F_{2}}{F_{3}} = 0.008 P_{3}^{2} + 6 P_{3} + 500 150 \le P_{3} \le 500$	0212.4	1005
A.4.2.	A constant load of 300MW is supplied by 2 generators having a capacity of 200MW	C313.4	1,2,3,5
	each. The respective incremental fuel costs are. $dC_{1}/dP_{2} = -0.1 P_{2} + 20 P_{2}/MW/br$		
	$dC_1/dP_{G1} = 0.1 P_{G1} + 20 Rs/MWhr$ $dC_2/dP_{G2} = 0.12 P_{G2} + 15 Rs/MWhr$		
	Compute the most economical division of load between the generators using lambda		
	iteration method and verify the results with C program.		
A.4.3.	Considering following 3 units	C313.4	1,2,3,5
n. 1 .J.	$IC_1=7.92+0.003124 P_{G1} IC_2=7.85+0.00388 P_{G2}$	0313.4	1,2,3,3
	$IC_1 = 7.92 + 0.00912 + 1G_1 IC_2 = 7.05 + 0.00900 + G_2$ $IC_3 = 7.97 + 0.00964 P_{G3}$		
	$P_{\rm D}=850{\rm MW}$		
	$P_{G1}=393.2MW, P_{G2}=334.6MW, P_{G3}=122.2MW$		
	Determine the optimum schedule if the load is increased to 900MW by using		
	participation factor method? Also apply any of the modern appropriate optimization		
	algorithm to verify the results		
Seminar	Compare existing grid and smart grid	C313.5	1,2,3,5
			, ,-,-

K.L.N. College of Engineering

Department of Electrical and Electronics Engineering

EE 6604 - DESIGN OF ELECTRICAL MACHINES [C314]

Important Questions/Tutorials/Assignments/Self study /Seminar topics.

1.Course outcomes

Course	Course outcomes	POs
C314.1	Compare Electrical Engineering materials; determine heat dissipation due Conduction, convection and radiation.	1,2,3,5
C314.2	Calculate mmf for slots and teeths, apparent flux density, main dimensions and winding details of DC machines.	1,2,3,5
C314.3	Design core, yoke, winding and cooling system of transformers.	1,2,3,5
C314.4	Develop output equation of AC machines, design stator and rotor of induction machines.	1,2,3,5
C314.5	Design stator and rotor of synchronous machines analyze their thermal behavior, design field systems for turbo alternators.	1,2,3,5

2. Mapping of Course Outcomes (COs), Course (C), Program Specific Outcomes (PSOs) with Program Outcomes. (POs) – before CBS[Levels of correlation:3(High),2(Medium),1(low).

1	i ugi an	JOund	Juies. (1	10s = -	Delote	CDOLL			auon.	Jungii),	2(INICUIU	III),1(10W	·)•		
Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C314.1	3	3	3	-	2	-	-	-	-	-	-	-	2	1	-
C314.2	3	3	3	-	2	-	-	-	-	-	-	-	2	1	-
C314.3	3	3	3	-	2	-	-	-	-	-	-	-	2	1	-
C314.4	3	3	3	-	2	-	-	-	-	-	-	-	2	1	-
C314.5	3	3	3	-	2	-	-	-	-	-	-	-	2	1	-
C314	3	3	3	-	2	-	-	-	-	-	-	-	2	1	-

3.PROGRAM OUTCOMES (POs)

Electrical and Electronics Engineering Graduates will be able to:

PO1: Engineering knowledge:

Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Problem analysis:

Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions:

Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO5: Modern tool usage:

Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

S.No.	4. Important Questions.	COs	POs
Q.1.1.	Define design. What are the factors those limit the design of a machine .Describe the	C314.1	2,3
	major considerations to evolve a good design?		
Q.1.2.	Classify various electrical conducting materials, their properties , requirements, and	C314.1	1,2
	uses. Show that use of aluminium conduction in electrical machines instead of		
<u> </u>	equivalent copper conduction results in reduction of rating by 22%.	~~~	
Q.1.3.	Describe the various types of magnetic materials, their properties , requirements, and	C314.1	1
	uses. What do you mean by "Ageing"? What are dynamo grade steel, CRGOs and		
014	transformer grade steel? Which magnetic materials are used in chokes and current Tr.?	0214.1	1
Q.1.4.	Explain the various types of insulating materials based on temperature rise, their	C314.1	1
015	properties , requirements, and uses. Which insulating materials are used in modern EM.?	C214.1	1
Q.1.5.	Compare the various modes of heat dissipation. Develop an expression for heat dissipation by conduction, convection and radiation. Give real time examples.	C314.1	1
Q.1.6.	Develop an expression to find hotspot temperature. Develop an expression for heat	C314.1	1
X	produced in the coil of an electrical machine considering the flow in two dimensions.	001111	•
	Find a relation between the effective thermal resistivity of winding, thermal resistivity		
	of insulation and space factor in electrical machines. Define space factor.		
Q.1.7.	Derive the equation of temperature rise with time in electrical machines. What is	C314.1	1,2
-	heating time constant. Show that the cooling curve of electrical machines is exponential		
	in nature. Define cooling time constant.		
Q.1.8.	Define "Rating" of an electrical machine. Classify the different duties and rating of	C314.1	1,2
	electrical machines with their respective temperature-time curves. Distinguish between		
	continuous duty and short time duty with examples.		
Q.1.9.	Describe any two methods used for determination of motor rating for variable load	C314.1	1
	drives with suitable diagram.		
Q.1.10.	Define specific Electric and magnetic loading. What are the choices of specific electric	C314.1	1
	and magnetic loadings.		
Q.2.1.	Write Ohms law of magnetic circuit. Derive an expression for reluctance of series and	C314.2	1
	parallel magnetic circuit. What are the similarities and differences between Electric and		
000	magnetic circuits?	0214.2	1
Q2.2.	Develop an expression for mmf of airgap of (a)smooth armature(b)slotted armature	C314.2	1
Q.2.3.	What are the problems associated with the calculation of mmf for teeth? Explain the	C314.2	1
02.4	methods of determination of mmf for teeth.	0214.0	1
Q2.4.	Distinguish between apparent and real flux density. Derive an expression for apparent	C314.2	1
0.2.5	flux density interms of real flux density. Define stacking factor. Develop an expression for the output equation of DC machines. How will you separate	C214.2	1
Q.2.5.		C314.2	1
	D,L for DC machines. What is meant by square pole criterion? Mention the guidelines for the selection of number of poles of DC machines.		
Q.2.6.	Describe the design details of the armature of a DC machines for lap and wave	C314.2	1,2,3
√ .∠.0.	windings.	0.514.2	1,2,3
	Determine the diameter and length of the armature core for		
	55kW,110V,1000rpm,4pole, DC Shunt generator, assuming specific electric and		
	magnetic loading of 26,000 Amp.Cond/m and 0.5Wb/m ² respectively. The pole arc		
	should be about 70% of pole pitch and length of core is about 1.1 times the pole arc.		
	Allow 10A for field current and assume a voltage drop of 4V for armature circuit.		
	Specify the winding used and also determine suitable values for the number of armature		
	conductor and No, of slots.		
	(D=0.36m, L=0.217m, S _a =38slots,C=38coils,Z=228Conductors,Cond/Slot=6,T _c =3T)		
Q2.7.	(a).Describe the procedure for the design of commutator and brushes for DC machines.	C314.2	1,2,3
	What are the commutator losses? Name the materials of commutator and brushes.		
	(b).Determine total commutator loss for 1000kW,500V,800rpm,10 pole generator, given		
	that commutator diameter= $1.0m$, current density at brush contact = $75X10^{-1}$		
	3 A/mm ² .Brush pressure is 14.7kN/m ² .Coefficient of friction =0.28, Brush contact		
	drop=2.2Volt.(13.6KW)		

	1	1	
	(c). Design a suitable Commutator for a 350kW,600rpm,440V,6pole,DC generator		
	having an armature diameter of 0.75m,No.of coils is 288.Assume suitable values		
	wherever necessary.		
Q.2.8.	Explain various steps involved in the design of shunt field winding of DC machine.	C314.2	1
Q.3.1.	Derive an expression for the output equation of a single-phase and three phase	C314.3	1
	transformer interms of core and window area. Develop the equation of voltage per turn		
	interms of rating of the transformer. Write the design details of winding of single and		
	three phase transformer.		
Q.3.2.	Explain the design aspects of transformer core. Draw square core section, cruciform	C314.3	1,2
	core and three stepped core. Give the relationships among the physical dimensions		,
	involved in the three cases. Draw and show the overall dimensions of single, three		
	phase core type and shell type transformers.		
Q.3.3.	Calculate the core and window area for a 1000kVA,6600/400V,50Hz,1 ϕ core type	C314.3	1,2.,3
X	transformer. Assume a maximum flux density of 1.25Wb/m ² and a current density of	001110	1,2.,0
	2.5 A/mm ² . Voltage/turn =30V Window space factor is 0.32.		
Q.3.4.	Determine the dimensions of yoke, core for a 200kVA,50Hz,1 ϕ core type transformer.	C314.3	1,2.,3
Q.J. 1 .	A cruciform core is used with distance between adjacent limb is equal to 1.6times the	0.514.5	1,2.,5
	width of core lamination. Assume emf/turn as 14Volts, maximum flux density is		
	1.1Wb/m ² , window space factor=0.32, current density =3A/mm ² . Stacking factor is		
	0.9. The net iron area is $0.56d^2$ in a cruciform core where d is the diameter of the		
	circumscribing circle. Also width of the largest stamping is 0.85d.		
Q.3.5.	Explain the design procedure of cooling tubes for a transformer.	C314.3	1
-		C314.3 C314.3	1
Q.3.6.	How will you estimate no-load current in single phase and three phase transformers?		
Q.3.7.	A 1 ϕ , 440V, 50HZ, Transformer is built from stampings having a relative permeability	C314.3	1,2,3
	of 1000. The length of flux path is 2.5m; area of C.S of core = $2.5 \times 10^{-3} \text{m}^2$; Primary		
	winding has 800 turns. Estimate the maximum flux and no load current of		
	Transformer. The iron loss at working flux density is 2.6 watts/Kg, iron weighs, 7.8 X		
	10^{3} Kg / m ³ , stacking factor = 0.9.(I _o = 1.61A)	~ ~	
Q.4.1.	Develop the Output equation for rotating AC machines. How will you separate D&L	C314.4	1
	for the rotating AC machines?. Describe the design details of stator winding.		
Q.4.2.	Calculate specific electric and magnetic loading of a 100 HP,3000V,3 ϕ ,50Hz,8pole,star	C314.4	1,2,3.
	connected, flame proof induction motor having stator core length 0.5m, stator bore is		
	0.66m.Take turns/phase=286. Assume full load efficiency=0.938,power factor=0.86.		
Q.4.3.	Describe the design details of rotor bars and end rings of squirrel cage &slip ring IM.	C314.4	1
Q.4.4.	Design a cage rotor for a 40HP,3\u03c6,400V,50Hz,6pole,delta connected, induction motor.	C314.4	1,2,3.
	A full load efficiency of 87%, and a full load power factor of 0.85 may be assumed.		
	Take D=33cm ,L=17cm, Stator slots=54,conductor/slot=14.		
Q.4.5.	A 3q/IM,has 54stator slots with 8conductor/slot and 72 rotor slots with 4	C314.4	1.
	conductors/slot.Find the No.of stator and rotor turns.Find the voltage across the slip		
	rings when the rotor is open circuited and at rest. Both stator and rotor are star		
	connected and a voltage of 400V is applied across the stator		
Q.4.6.	Discuss the points to be considered for estimating the length of air gap of an induction motor?	C314.4	1.
Q.5.1.	Develop an expression for the output equation of synchronous machine. How will you	C314.5	1.
~ - · - ·	separate D&L for synchronous machines? What are the choice of B_{av} and ac for		
	synchronous machine.		
Q5.2.	The output co-efficient of a1250kVA,800rpm,synchronous generator is 200kVA/m ³ -	C314.5	1,2,3.
<u>ر</u> ٠. <u>-</u> .	rps.(a).Find the values of main dimensions of the m/c , if $L/D=0.2$.(b).Also calculate the		-, _, 2.
	value of main dimension, it specific loading are decreased by 10% each with speed		
	value of main dimension, if specific loading are decreased by 10% each, with speed remaining the same (c). The speed is decreased to 150 rpm with specific loading		
	remaining the same.(c). The speed is decreased to 150rpm with specific loading		
053	remaining the same.(c).The speed is decreased to 150rpm with specific loading remaining the same as in (a).Assume same L/D. Comment on the result.	C314 5	1
Q.5.3. Q.5.4.	remaining the same.(c). The speed is decreased to 150rpm with specific loading	C314.5 C314.5	<u>1.</u> 1.

	induction motor: (a).Over load capacity (b).air gap length (c).Number of poles (d)		
	frequency.		
	5. Tutorial Questions.		
T.1.1.	A copper bar 12 mm in diameter is insulated with micanite tube which fits tightly around the bar and into the rotor slots of an induction motor. The micanite tube is 1.5mm thick and its thermal resistivity is 8Ω m.Calculate the loss that will pass from copper bar to iron if a temperature difference of 25°C is maintained between them. The length of bar is 0.2m. (Diagram: Refer at the end) [19W]	C314.1	1,2,3
T.1.2.	A heat radiating body can be assumed to be spherical surface with co-efficient of emissivity =0.8. The temperature of the body is 60° C and that of the walls of the room, in which it is placed, is 20° C. Find the heat radiated from the body in W/m ² (224.6W/m ²)	C314.1	1,2,3
T.1.3.	A transformer core of plate width 0.5m and with a stacking factor of 0.94, has a uniformly distributed core loss of $3W/kg$. The thermal conductivity of the steel is $150W/^{\circ}C$ -m and the surface temperature is $40^{\circ}C$.Estimate the temperature of the hot spot if the heat flow is all to one end of the core.(ii).one half to the surface of each end. The heat flow is assumed to be along laminal. The density of steel plate is $7800kg/m^3$. ($58.3^{\circ},44.6^{\circ}$)	C314.1	1,2,3
T.1.4.	A field coil has a cross section of $100X50$ mm ² and its length of mean turn is 1m.Estimate the hot spot temperature above that of outer surface of the coil, if the total loss in the coil is 120W.Assume stacking factor =0.56,resistivity=2 Ω -m.(8.4°)	C314.1	1,2,3
T.1.5.	A field coil has a heat dissipating surface of 0.15m ² and a length of mean turn of 1m.It dissipates loss of 150W, the emissivity being 34W/m ² -°C. Estimate the final steady temperature rise of the coil and its time constant, if the cross-section of the coil is 100X50mm ² .Specific heat of copper is 390J/kg-°C. The space factor is 0.56.Copper weighs 8900kg/m ³ .	C314.1	1,2,3
T.1.6.	The temperature rise of transformer is 25°C after 1 hour and 37.5°C after 2 hours of energizing from cold conditions. Calculate its final steady temperature rise and the heating time constant. If this temperature falls from the final steady state value of 40°C in 1.5 hours when it is disconnected, calculate the cooling time constant. The ambient temperature is 30°C. (T_h =1.44 hours, T_c =0.932hrs.)	C314.1	1,2,3
T.2.1.	Calculate mmf required for the airgap of a machine having length=0.32m,including 4ducts of 10mm each,pole arc =0.19m,slot pitch =65.4mm,slot opening=5mm,airgap length=5mm,flux per pole=52mWb. Given Cater's coefficient is 0.18 for opening/ gap=1 and 0.28 for opening / gap=2.width of the slot=5mm.(3590AT)	C314.2	1,2,3
T.2.2.	A 50 kW,220V,4pole,DC m/c has the following data:Armature diameter=0.25m, Length=0.125m,flux per pole=11.7mWb,length of airgap at pole centre=2.5mm,the ratio of pole arc to pole pitch =0.66. Calculate the mmf required for airgap (i).if the armature is treated as smooth.(ii).if the armature is slotted and the gap contraction factor is 1.18. (1,451AT,1712AT)	C314.2	1,2,3
T.2.3.	Determine the apparent flux density in the teeth of a DC m/c when the real flux density is 2.15Tesla.Slot pitch=28mm,slot width=10mm,gross core length=0.35m,No.of ventilating ducts=4,each 10mm wide.The magnetizing force for a flux density 2.15T is 55,000AT/m.The iron stacking factor=0.9.(2.215T.)	C314.2	1,2,3
T.2.4.	Estimate the main dimensions of a 4 pole ,100kW,1500rpm,DC generator, assuming a specific electric and magnetic loading as 19,000amp cond/m, and 0.4 Tesla respectively. Assume that the length of armature=pole pitch. (D=0.41m;L=0.318m.)	C314.2	1,2,3
T.2.5.	A 350kW,500V,450rpm,6pole,DC generator is built with an armature diameter of 0.87m&core length of 0.32m.The lap wound armature has 660 conductor. Calculate the specific electric & magnetic loading.($B_{av}=0.69Wb/m^2$, ac=28,172 amp cond/m)	C314.2	1,2,3
T.2.6.	Calculate the main dimension of 20kW,1000rpm,DC motor. Given that $B_{av}=0.37$ Tesla, ac=16,000amp.cond/m.Make the necessary assumption.(D=0.38m;L=0.14m)	C314.2	1,2,3
T.3.1.	Calculate kVA output of a 1\u03c6transformer from the following data: Core height/Distance bt core centre=2.8;Diameter of circumscribing circle/Distance bt core centre=0.56.Net iron area/area of circumscribing circle=0.7,Current	C314.3	1,2,3
	K L N C E /EEE/HAND BOOK/2015-2016/EVEN/VLSE		

	density=2.33A/r core=1.2Wb/m ²					density of		
T.3.2.	Determine the m for 5kVA, 11,00 area in the wind square core secti 1.4A/mm ² ,and a $W_w=0.0855m$, H $a_p=0.454/1.4=0.2$		1,2,3					
T.3.3.	Calculate the ov following data n space factor=0.3 width.Use 3 step		1,2,3					
T.3.4.	A tank of a 1250 height as 1.55x0 tubes of the tran radiation=6W/m convection due t tube=1m,diamet cooling .(164 tul		1,2,3					
T.3.5.	Calculate the ac Tr. having the f 7.8 X 10^3 Kg/m ³ Py. Turn =200; 0.502A;Reactive B _m Mmf P _i (W/kg)	;	1,2,3					
T.4.1.	Determine the a No. of conduc motor. Specific	tors for a 1 magnetic and ull load efficient aploys a doub	1kW,400V,3φ electric loadin ency=0.85, Po le layer windir	9,4pole,1425rp ngs are0.45W wer factor=0.8 ng.	m,delta conn b/m ² and 23,0 88.Ratio Pole	ected inductior 00 Amp.cond/m arc to pole pitch	1	1,2,3
T.4.2.	Estimate the cor 100kW,3300V, ac=25,000amp.c factor. The slot I (D=0.771m,L=0	C314.4	1,2,3					
T.4.3.	Estimate the mass sectional area of 50Hz,975rpm,in $B_{av}=0.45Wb/m^2$ L=0.1212m, $l_g=0.1212m$		1,2,3					
T.5.1.	Prove that for a volume=Qx 10 ³ 100MVA,11kV,	C314.5	1,2,3					
	value of flux der electric loading z cylindrical part of 200m/sec.Estima /phase. (Vol.=2	nsity in the air is 80,000 amp of the rotor.(ii ate the require	gap of a mach .cond./m.(i).D).The peripher ed diameter and	ineis to be lim etermine the a al speed of rot d length.(iii)E	nited to 1Wb/n approximate vector is to be limits stimate the No	ited to		

	Assume ave	rano airaa	n dansity o	0.6Wh/m	2 Specific c	lactria laca	lingof			Γ
	30,000amp.									
	(D=0.728m)									
	$a_s=131.2/4=$									
T.5.3.	A 500kVA,		C314.5	1,2,3						
1.0.001	180turns/ph								00110	1,2,0
	0.54Wb/m^2 .							traction		
	factor is 1.1									
	factor is 0.9			01				C		
T.5.4.		<u> </u>	6.Assignn	nents/Semi	nar/Self stu	ıdy topics.				
A.1.1.	(a).Modern	methods o	f cooling o	of Turbo alt	ernators(2p	ages-assigi	nment),		C314.1	1,2,3,5
	(b).Effect of									
	(c). Embedd			ctors and n	nodern met	hods of me	asurement	of winding	5	
	temperature	, ,								
A.2.1.	A laminated								C314.2	1,2,3
	such that ma	aximum w	idth is 1.4t	imes the m	inimum. Es	timate the	mmf requi	red for a		
	mean flux d				.Use Simps	son's rule.T	'he B-'at' c	surve for		
	the material		· · · · · · · · · · · · · · · · · · ·		2.0	0.1			1	
	$\frac{B(Wb/m^2)}{(A/m)}$	1.6	1.8	1.9	2.0	2.1	2.2	2.3		
A.2.2.	'at'(A/m) A 4 pole,25	3,700	10,000	17,000	27,000	41,000	70,000	109,000	C314.2	122
A.2.2.	are square a		-			•		- <u> </u>	C314.2	1,2,3
	are square a ac=17,000A		-	-	1					
	armature wi									
	Z=990Cond	-				m_{z} , σ_{a} – σ_{z}	510t5, C=10	5500115,		
A.2.3.	(a).Sketch t				chine and d	evelop an e	expression	for the	C314.2	1,2,3
	mmf for var					r				_,_,_
	(b). A multi	-		following of	dimensions	Cross secti	on of the p	ole		
	body=0.08n									
	=0.9m(pole	to pole),c	ross sectio	n of armat	ure core =0	.04m ² ,leng	th of flux p	ath in core		
	= 0.45m,(pc									
	slots/pole ar					0,	0			
	is 0.33m and	-					U			
	0.1Wb.The	1	•				0	tic circuit is		
	1200.Assum							TA 4	<u> </u>	1 2 2 7
A.2.4.	Write a prog	-			ain dimensi	on of DC n	hachine for	T 2.4.	C314.2	1,2,3,5
A 2 1	[Ref:Page N								C214.2	1025
A.3.1.	(a).Modern					one of sine	la nhasa tr	naformar	C314.2	1,2,3,5
	(b). Write a [Ref:Page N				ore unitensio	ons of sing	le pliase us	ansionnei.		
A.4.1.	(a).Classify			-					C314.4	1,2,3.5
A.4.1.	(b).Develop	~ 1	0		on of leakad	e reactance	e of inducti	on motor	0.514.4	1,2,3.3
	(c).Determin	-			-					
	slot having	-	-	-	-					
	conductor=2		-			-	-			
	wedge=3.5n	-				-	-	3slots		
	/pole/phase.									
	stator slot le						L · · · · · ·			
					gnetizing cu	urrent of th	ree phase I	M.		

K.L.N. College of Engineering Department of Electrical and Electronics Engineering **EE6002- Power System Transients [C315E3]**

Important Questions /Tutorials /Assignments /Self study /Seminar topics.

1. Course outcomes

1. 00	Juise outcomes	
Course	Course outcomes	POs
C315E3.1	Explain the concept of transients and Compute the solution of transient current equation for RL	1,1
	and RLC system. (K2)	
C315E3.2	Illustrate the importance of switching transients; Explain the concept of resistance switching, load	1,2,7
	switching and capacitance switching. (K4)	
C315E3.3	Explain the concept of lightning mechanism, Describe the interaction between lightning and	1,2,6,7,8
	power system (K2)	
C315E3.4	Apply the concept of reflection and refraction, Draw the Bewley Lattice diagram for different	1,2,5
	systems. (K3)	
C315E3.1	Explain the concept of transients and Compute the solution of transient current equation for RL	1,2,5
	and RLC system. (K2)	
2. M	apping of Course Outcomes (COs), Course (C), Program Specific Outcomes (PSOs) with Program	gram

2. Mapping of Course Outcomes (COs), Course (C), Program Specific Outcomes (PSOs) with Program Outcomes. (POs) – before CBS[Levels of correlation:3(High),2(Medium),1(low).

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C315E3.1	3	3	-	-	-	-	-	-	-	-	-	-	2	-	-
C315E3.2	3	3	-	-	-	-	2	-	-	-	-	-	2	-	1
C315E3.3	3	1	-	-	-	1	2	1	-	-	-	-	1	-	1
C315E3.4	3	1	-	-	2	-	-	-	-	-	-	-	1	1	-
C315E3.5	3	1	-	-	2	-	-	-	-	-	-	-	1	1	-
C315E3	3	2	-	-	1	-	1	-	-	-	-	-	1	-	-

3. PROGRAM OUTCOMES (POs)

Electrical and Electronics Engineering Graduates will be able to:

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

S.No.	4. Important Questions.	COs	POs
Q.1.1.	Define Power system Transients? Derive the expression for transients due to Series and	C315E3.1	1,2
	parallel RLC elements?		
Q.1.2.	With illustration, explain the various types of power system transients?	C315E3.1	1
Q.1.3.	Draw a simple circuit that produces transients? What are the sources, causes and effects of	C315E3.1	1
	transients on power system? Explain them in detail?		
Q.1.4.	Elaborate your comment on double frequency transients on power systems?	C315E3.1	1
Q.1.5.	State and explain why transient study is importance in power system planning?	C315E3.1	1
Q.2.1.	Define switching transients? What is the need of resistance switching? With the equivalent	C315E3.2	1
	circuit, explain the concept of resistance switching for interrupting the resistor current?		
	Explain its significance in power system?		
Q2.2.	What is capacitance switching? What are the causes of capacitor inrush currents? Explain the	C315E3.2	1
	theory of capacitance switching including the effect of source regulation. Also discuss the		

	effects of restrike and multiple re-strikes. Give an illustration for multiple re-striking transients?		
Q.2.3.	With appropriate waveform, explain the phenomenon of current suppression, current chopping,	C315E3.2	1
Q2.4.	ferro resonance condition. Define transient recovery voltage? Derive the expression and explain the characteristics of energy released by transformer when the magnetising current is chopped? Explain the switching in both normal and abnormal conditions with neat sketches.	C315E3.2	1,2
Q.2.5.	What is meant by subsidence transients? Draw and explain the waveforms for transient voltage across the load switch with equivalent circuit?	C315E3.2	1
Q.3.1.	What are the effects of lightning? What are the types of over voltages? Explain with neat sketches the mechanism of lightning discharge.	C315E3.3	1
Q.3.2.	What are the different types of strokes? Mention the different theories of charge formation and explain with neat diagrams the two different theories of charge generation in a thunder cloud.	C315E3.3	1
Q.3.3.	What is back flashover? Define isokeraunic level or thunderstorm days? Give the mathematical model for lightning discharges and explain them.	C315E3.3	1,2
Q.3.4.	Draw the lumped parameters equivalent circuits for lightning stroke to Tower? Explain the interaction between lightning and power system.	C315E3.3	1
Q.3.5.	Explain the significance of tower footing resistance? What are the factors that contribute good line design? Explain the protection offered by ground wires.	C315E3.3	1
Q.4.1.	How is the transmission lines classified? Explain the transient response of a system with series and shunt and lumped parameters	C315E3.4	1
Q.4.2.	What is surge impedance of a line and why is it also called the natural impedance? Why velocity of propagation over all overhead lines is same? Explain the travelling wave concept with step response.	C315E3.4	1
Q.4.3.	What do you mean by travelling waves? Define crest and front of a travelling wave? Distinguish between reflection and refraction of travelling waves. Derive the expression for reflection coefficient and refraction coefficient and explain the behavior of travelling waves at short circuited lines.	C315E3.4	1,2
Q.4.4.	Draw the lattice diagram for single transmission line terminated in impedance? Explain the Bewley's lattice diagram with an example.	C315E3.4	1
Q.4.5.	What is meant by switching surges? Define standing wave voltage ratio. Derive the wave equation and express the various parameters? Derive an expression for standing wave equation.	C315E3.4	1,2
Q.5.1.	What is meant by kilometric fault and explain the occurrence and effects in a power system	C315E3.5	1
Q.5.2.	Explain in detail about the switching surges on an integrated power system.	C315E3.5	1
Q.5.3.	What is meant by EMTP? Explain the network modeling and modeling of lumped parameters R, L & C for EMTP calculation.	C315E3.5	1
Q.5.4.	What are the causes of over voltage? Analyze and explain the causes of over voltages induced by various faults occurring in power system. Explain the voltage transients on closing and reclosing lines with expressions.	C315E3.5	1,2
Q.5.5.	Discuss the effects on power system due to Line dropping and load rejection.	C315E3.5	1
	6. Assignments/Seminar/Self study topics.		
A.1.1.	Explain with practical examples, what would happen if transients occur on power system?	C315E3.1	1
A.1.2.	From the equivalent circuit, how could you determine the double frequency transients on power systems	C315E3.1	1
A.2.1.	With the help of necessary equations, how would you justify that the energy is released by transformer when the magnetizing current is chopped?	C315E3.2	1
A.2.2.	Distinguish between resistance switching and capacitance switching?	C315E3.2	1
A.3.1.	Mechanisms of Lightning Injury (one page -assignment)	C315E3.3	1,6
A.3.2.	Lightning Safety Awareness(one page-self study)	C315E3.3	1,7,8
A.4.1	Simulation of transient response of systems with series and shunt lumped parameters and distributed lines using MATLAB (Seminar)	C315E3.4	1,5
A.5.1	Computation of transients using MATLAB (Seminar)	C315E3.5	1,5

Anna University Question Paper

COMMUNICATION ENGINEERING

Reg. No. :

Question Paper Code: 71457

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2015.

Fifth Semester

Electrical and Electronics Engineering

EC 2311/EE 54/10144 EE 501 - COMMUNICATION ENGINEERING

(Regulation 2008/2010)

(Common to PTEC 2311 - Communication Engineering for B.E. (Part Time)

Fifth Semester - Electrical and Electronics Engineering -(Regulation 2009))

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. Define the propagation constant of transmission line.
- 2. For a transmission line having incident voltage of 5V and reflected voltage of 3V, determine SWR.
- 3. What is shape factor?
- 4. Write any four primary applications of FDM.
- 5. Differentiate Bit rate and Band rate of digital modulation.
- 6. What are the four most common methods of pulse modulation?
- 7. What are the types of characters used in data communication codes?

8. List the channels and their data rate used in ISDN.

- 9. What are the primary advantages of optical fiber systems?
- 10. Define angle of elevation.

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) (i) Define and derive the free space path loss.

(6)

 (ii) "Space wave propagation distance can be extended by increasing either the transmit or receive antenna height or both"- Justify the statement with the required diagrams and derivation. (10)

Or

- (b) (i) With a neat diagram, explain the process of matching a load to a transmission line with a shorted stub.
 - (ii) Perform the phasor analysis of input impedance for a transmission line less than one quarter wavelength long.
- 12. (a) For an AM-DSBFC modulator with a carrier frequency $f_c = 100 KHz$ and a maximum modulating signal frequency $f_{m(max)} = 10 KHz$, Determine,
 - (i) Frequency limits for upper and lower side bands.
 - (ii) Bandwidth.
 - (iii) Upper and lower side frequencies produced when the modulating signal is a single-frequency 3KHz tone.
 - (iv) Draw the output frequency spectrum.

Or

- (b) Explain the operation of Foster-seeley discriminator with the following.
 - (i) Schematic diagram
 - (ii) Vector diagrams for $fin = f_0$,

 $fin < f_0$ and

 $fin > f_0$.

13.

(a) A PCM system has the following parameters: a maximum analog input frequency of 4KHz a maximum decoded voltage at the receiver of $\pm 2.55V$, and a minimum dynamic range of 46dB. Determine the following:

- (i) Minimum sample rate
- (ii) Minimum number of bits used in the PCM code
- (iii) Resolution
- (iv) Quantization error.

Or

(b) What is BPSK? With a neat block diagram, explain BPSK transmitter. Also analyze the Bandwidth considerations of BPSK.

14. (a) Determine the BCS for the following data and CRC generating polynomials:

data
$$G(x) = x^{7} + x^{9} + x^{4} + x^{2} + x + 1$$

CRC $P(x) = x^5 + x^4 + x^1 + x^0$

Or

- (b) What are the access control methodologies used in LAN? Explain the operation of Token Ring with the following.
 - (i) Token frame layout
 - (ii) MAC sublayer frame layout.
- 15. (a) Describe briefly and compare the three types of optical fiber configurations.

Or

3

(b) Discuss in detail about the frequency reuse concept of cellular network. Support your answer with the required diagrams.

Reg. No. :

Question Paper Code: 21457

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015

Fifth Semester

Electrical and Electronics Engineering

EC 2311/EE 54/10144 EE 501 - COMMUNICATION ENGINEERING

(Regulations 2008/2010)

(Common to PTEC 2311 – Communication Engineering for B.E. (Part-Time) Fifth Semester – Electrical and Electronics Engineering – (Regulations 2009))

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

1. Assume that a carrier 50 sin $9800 \pi t$ is modulated using a single tone message $m(t) = 15 \cos 600 \pi t$. Plot the spectrum of

(a) AM

(b) DSB-SC.

- 2. Mention the differences between the Narrow band FM and Wide band FM.
- 3. Explain why a single channel PPM system requires a synchronizing signal, whereas PAM and PWM do not.
- 4. What is slope overload in Delta Modulation? Mention the techniques to overcome this.
- 5. An analog signal is band limited to BHz, sampled at the Nyquist rate, and the samples are quantized into 4 levels. The quantization levels Q_1, Q_2, Q_3 and Q_4 (messages) are assumed independent and occur with probabilities $P_1 = P_4 = 1/8$ and $P_2 = P_3 = 3/8$. Find the information rate.
- 6. Draw the NRZ and RZ signaling format of Binary sequences 11001.
- 7. What is direct sequence spread spectrum technique?

- 8. Draw the block diagram of pseudo random sequence generator.
- 9. Mention the different types of satellite orbits.
- 10. What are the losses associated with optical link?

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

- 11. (a) (i) With a neat diagram derive the expressions for frequency spectrum of AM wave. (10)
 - (ii) Calculate the power relationship between the AM, DSB-SC, SSB-SC. Mention its % of power saving.
 (6)

Or

- (b) (i) Using a suitable mathematical analysis, show that FM modulation produces infinite sidebands. Also derive an expression for the frequency modulated output and its spectrum. (12)
 - (ii) What is the relationship between FM and PM?
- 12. (a) (i) Sketch the flat topped PAM waveform that results from sampling a 1 KHz sine wave at a 4 KHz rate. What is its drawback? (8)
 - (ii) With a suitable block diagram explain the operation of Delta modulation.
 (8)

Or

- (b) (i) A 1.5 MHz information signal with a dynamic range of 64 mV is sampled, quantized and encoded using a direct binary code. The quantization is linear with 512 levels. Determine maximum possible bit deviation and amplitude of one quantization. (6)
 - (ii) With a necessary block diagram explain the QPSK transmitter. (10)
- 13. (a) Write short notes on :
 - (i) Average information and entropy (6)
 - (ii) Capacity of a Gaussian channel (6)
 - (iii) Bandwidth S/N tradeoff. (4)

Or

2

(b) With the necessary diagrams explain the coding and decoding of block codes. (16)

21457

(4)

Reg. No. :

Question Paper Code : 23379

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Fifth Semester

Electrical and Electronics Engineering

EC 1311 - COMMUNICATION ENGINEERING

(Common to Electronics and Instrumentation Engineering and Instrumentation and Control Engineering)

(Regulation 2004)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What is the need for modulation?
- For an AM superheterodyne receiver with IF, RF and LO frequency of 455 KHz, 600 KHz and 1055 KHz, determine the (a) Image frequency (b) Image frequency rejection ratio for a preselector Q of 100.
- 3. A cable has inductance of 15 nH/m and 85 pF/m at a specified frequency. What is the impedance?
- 4. Define the term 'maximum usable frequency'.
- 5. State the significance of 'bit error rate'.
- 6. Write the relationship between the minimum bandwidth required for an FSK system and the bit rate.
- 7. What kind of switching technique is employed in telephone networks?
- 8. List the merits of ISDN.
- 9. Define apogee and perigee.
- 10. State Snell's law.

		PART B — $(5 \times 16 = 80 \text{ marks})$	
11.	(a)	With a block diagram, explain the functioning of super heterody, receiver. Comment on the significance of each block.	ne radic (16)
		Or	
	(b)	Describe the operation performed by various building block high -level AM transmitter with a neat sketch. Give the merits over FM.	
12.	(a)	Discuss in detail about the types, equivalent circuit, loss impedance matching of a transmission line.	es and
		Or	
	(b)	(i) Explain the concept of ground wave propagation with its f advantages and disadvantages.	eatures, (10)
		(ii) Discuss in detail about space wave propagation.	(6)
13.	(a)	(i) Explain the generation and demodulation of PCM.	(8)
		 Explain the TDM transmission and explain how this could to transmit a two or more messages. 	be used (8)
		Or	
	(b)	Explain the generation and bandwidth of the three types of modulated signals.	binary (16)
14.	(a)	(i) What are the different types of data communication codes? in detail.	Explain (10)
		(ii) Brief about the OSI seven layer architecture.	(6)
		Or	
	(b)	(i) With a neat sketch explain the principle, architecture various layers in ISDN.	and the (10)
		(ii) What is the need for equalizers in telephone circuits?	(6)
15.	(a)	(i) Explain the satellite system link equations.	(10)
		(ii) State and explain the Kepler's law of planetary motion.	(6
		Or	
	(b) -	(i) Explain the advantages of optical fibre communications.	(6
		(ii) Explain the operation of any one light source and detectors.	(10

SOLID STATE DRIVES

Question Paper Code : 73427

Reg. No. :

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2015.

Sixth Semester

Electrical and Electronics Engineering

EE 1351 - SOLID STATE DRIVES

(Common to B.E. (Part - Time), Fifth Semester Regulation 2005)

(Regulation 2004/2007)

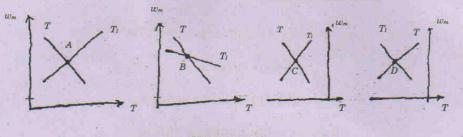
Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

1. How are loads classified?


2. What is meant by acceleration mode of an electric drive?

3. What are the types of control strategies in a dc chopper?

- 4. State the advantages of DC chopper drives.
- 5. Why is the speed control of a 3ϕ induction motor with constant supply voltage and reduced supply frequency not preferred?
- 6. Draw the basic block diagram of closed loop drive.
- 7. Define self control mode of synchronous motor.
- 8. State the advantages of permanent magnet synchronous motors.
- 9. Write the purpose of current limit controller in a drive system.
- 10. Give any four factors to be considered for the selection of controller.

PART B --- (5 × 16 = 80 marks)

- 11. (a) (i) Derive the mathematical condition for steady state stability of equilibrium point. (6)
 - (ii) Based on the mathematical condition, examine the stability equilibrium points given in Fig. 11 (a) (ii). (10)

Fig. 11(a) (ii)

Or

- (b) (i) Explain the multi quadrant dynamics in the speed-torque plane. (8)
 - (ii) A drive the following parameters : $J=10 kg m^2, T=100 0.1N$, N-m. Passive load torque $T_1 = 0.05$ N, N-m where N is the speed in rpm. Initially the drive is operating in steady state. Now it is to be reversed. For this motor characteristic is changed to T=-100-0.1N, N-m. Calculate the time of reversal. (8)
- 12. (a) (i) Explain using a power circuit the working of a single phase semi converter fed separately excited motor drive. (8)
 - (ii) A separately excited dc motor operating from a single phase half controlled bridge at a speed of 1400 rpm has an input voltage of 330 sin 314t and a back emf of 80 V. The SCR are fired symmetrically at $\alpha = 30^{\circ}$ in every half cycle. The armature has a resistance of 4 ohms. Calculate the average armature current and the motor torque. (8)
 - Or

2

- (b) (i) Describe DC shunt motor can be made to both run as a motor and operate in the braking mode using a chopper. (8)
 - (ii) A dc shunt motor fed from 400 V dc source through a chopper has the following parameters. Ra = 0.02 ohms $R_f = 0.04$ ohms $k=5 \times 10^{-3}$ Nm/Amp². The average armature current of 300 Amps is ripple free F or a chopper duty cycle of 50% determine
 - (1) Input power from the source,
 - (2) Motor-speed and
 - (3) Motor torque.

(8)

(a) Explain constant slip speed control of induction motors.

Or

- (b) (i) Derive the speed torque characteristics of static slip power recovery scheme based induction motor drive. (8)
 - (ii) Explain the modes of operation of static Scherbius drive. (8)
- 14. (a) (i) Explain open loop v/f control of synchronous motor drives. What is the need of delay circuit in open loop v/f control? (8)
 - (ii) A 5000 kW, 3 phase 3.3 kV, 50 Hz, 0.8 (lagging) power factor, 4 pole, star connected synchronous motor has the following parameters $X_s = 15 \ \Omega$, $R_s = 0$. Rated field current is 10 A. Calculate armature current and power factor at half the rated torque and field current. (8)

Or

- (b) (i) Explain self control of synchronous motor drive operated with constant margin angle control. (10)
 - (ii) Write brief notes on different types of permanent magnet 4 synchronous motors.
 (6)
- 15. (a) Write the step by step procedure and derive the transfer function of the DC motor and load system. (16)

Or

(b) Design a speed controlled DC motor drive maintaining the field flux constant. The motor parameters and ratings are as follows.

220 V, 8.3 A, 1470 rpm, $Ra = 4 \Omega$, J = 0.0607 kg-m2, La = 0.072 H,

Bt = 0.0869 Nm/rad/sec Kb = 1.26 V rad/see

The converter is supplied from 230 V, 3-phase AC at 60Hz. The converter is linear and its maximum control input voltage is \pm 10 V.

The tachogenerator has the transfer function $G_w(s) = 0.065/(1+0.002_s)$. The speed reference voltage has a maximum of 10 V. The maximum current permitted in the motor is 20 A. (16)

3

73427

13.

Reg. No.

Question Paper Code : 21510

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Sixth Semester

Electrical and Electronics Engineering

EE 2352/EE 62/10133 EE 602 - SOLID STATE DRIVES

(Regulations 2008/2010)

(Common to PTEE 2352/10133 EE 602 — Solid State Drives for B.E. (Part – Time) Sixth Semester Electrical and Electronics Engineering — Regulations 2009/2010)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

1. What is dynamic torque?

2. Draw the load torque characteristics of constant power loads.

- 3. Write down the speed torque equation of a single phase fully controlled converter fed separately excited dc motor drive.
- 4. What are the advantages of chopper fed dc drives over controlled rectifier fed dc drives?
- 5. Write the transfer function of converter in closed loop control of dc motor drives.
- 6. Write any two parameters of converter selection and characteristics.
- 7. Why is stator voltage control method suitable fan and pump drives?
- 8. What are the advantages of vector control over scalar control technique?
- 9. Why is frequency command applied through a delay circuit in open loop v/f control of synchronous motor drives?
- 10. What are the types of permanent magnet synchronous motor drives?

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a)

(i)

A motor drives two loads. One has rotational motion. It is coupled through a reduction gear with a = 0.1 and efficiency of 90%. The load has a moment of inertia of 10 kg-m² and a torque of 10 N-m. Other load has a translational motion and consists of 1000 kg weight to be lifted up at an uniform speed of 1.5 m/s. Coupling between this load and the motor has an efficiency of 85%. Motor has an inertia of 0.2 kg-m² and runs at a constant speed of 1420 rpm. Determine equivalent inertia referred to the motor shaft and power developed by the motor. (10)

 (ii) Explain the multi-quadrant operations of low speed hoist in speed torque plane.
 (6)

Or

- (b) (i) Derive the mathematical condition for steady state stability of equilibrium point. (8)
 - (ii) Explain the operation of electrical drives in three different modes.(8)

(a) Give the steady state analysis of 3 phase controlled converter fed separately excited dc motor in continuous and discontinuous conduction modes. (16)

Or

- (b) (i) A 200 V, 875 rpm, 150 A separately excited dc motor has an armature resistance of 0.06Ω . It is fed from a single phase fully controlled rectifier with an ac source voltage of 220 V, 50 Hz. Assuming continuous conduction, calculate
 - (1) Firing angle for rated motor torque and (-750) rpm
 - (2) Motor speed for $\alpha = 160^{\circ}$ and rated torque. (10)
 - (ii) Explain the four quadrant operation of chopper fed dc drives. (6)
- 13. (a) Derive the transfer function of separately excited dc motor with armature voltage control. (16)

Or

2

(b) Design the speed controller of converter fed separately excited dc motor with inner current control and outer speed control loops. (16)

14.	(a)	(i)	A 2.8 kW, 400 V, 50 Hz, 4 pole, 1370 rpm, delta connected squ cage induction motor has following parameters referred to stator: Rs = 2 Ω , $Rr' = 5 \Omega$, $Xs = Xr' = 5 \Omega$, $Xm = 80 \Omega$. Motor spec controlled by stator voltage control. When driving a fan load it : at rated speed and rated voltage. Calculate motor terminal volt current and torque at 1200 rpm.	the ed is runs
		(ii)	Write short notes on energy efficient drives.	(6)
			Or	
	(b)	(i)	Explain constant air gap flux based closed loop v/f control techn of induction motor drive in detail with neat sketch and neces equations.	
		(ii)	Make a detailed comparison between VSI and CSI fed induc motor drives.	etion (8)
15.	(a)	(i)	Explain the concept of self control in detail.	(8)
		(ii)	Explain the open loop v/f control of synchronous motor drives.	(8)
			Or	
	(b)		lain the constant marginal angle control technique of self contro chronous motor drive employing load commutated thyristor invert	

3

(16)

EMBEDDED SYSTEMS

Reg. No. :

Question Paper Code : 41214

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Seventh Semester

Electronics and Communication Engineering

EC 1316 — EMBEDDED SYSTEMS

(Common to EC 1306 A Embedded Systems for Fifth Semester Information Technology)

(Regulation 2008)

Time : Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Write the real time constraints of embedded systems.
- 2. Mention the major hardware components used for the design of an embedded system.
- 3. What is RTC? State any two applications.
- 4. List the characteristic of synchronous communication.
- 5. State the function of queue pointers.
- 6. What is a cross compiler?
- 7. Differentiate process and thread.
- 8. State the principle of real time task scheduling.
- 9. Mention any four memory related functions.
- 10. What is the necessity for IPC in RTOS?

PART B — $(5 \times 16 = 80 \text{ marks})$

11.	(a)	(i)	With an example, explain the classification of embedded systems.(8)
		(ii)	Discuss the design possibilities of embedded systems on a chip. (8)
	1		Or
	(b)	(i)	Describe the important features of exemplary embedded systems. (10)
		(ii)	Discuss the concepts and types of software embedding into the system. (6)
12.	(a)	(i)	Discuss on parallel port devices. (8)
		(ii)	Explain the hardware and software timer used in embedded systems. (8)
			Or
	(b)		lain the features of buses and the common modes used for parallel munication.
13.	(a)	(i)	With example, explain the use of pointers in the execution of function calls. (8)
		(ii)	Explain the use of function queues in programming. (8)
			Or
	(b)	(i)	Explain the use of object oriented programming concepts in embedded programming. (8)
		(ii)	Explain how memory operations are optimized in embedded programming. (8)
14.	(a)	(i)	Explain the file system organization and implementation in RTOS. (8)
		(ii)	Explain the principle of preemptive scheduling and its critical section service. (8)
			Or
	(b)	(i)	Explain the priority inversion problem and its solution. (8)
		(ii)	Describe the semaphore flag based interprocess communication. (8)
.5.	(a)	Disc	uss the design considerations and functions of any one RTOS.
			Or
	(b)	Expl exan	ain the RTOS for multitasking in real time implementation with an apple.
			2 41214

Reg. No. :

Question Paper Code : 41066

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2014.

Seventh Semester

Electrical and Electronics Engineering

10144 CSE 26 — EMBEDDED SYSTEM

(Regulation 2010)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What is a real time embedded system?
- 2. Mention the types of memories in the system.
- 3. What is ARS application register set?
- 4. The memory map for an exemplary Embedded System, debit-credit card needs a 2KB memory. It also needs a 256 Byte RAM mainly for stacks. It also needs EEPROM 512 Byte for storing the balance amount. Write the memory map in the form of linker script program.
- 5. What is latency?
- 6. Mention any two non-maskable interrupts.
- 7. What is a Process Control Block?
- 8. What are the three important classes of devices in UNIX?
- 9. Mention the processor specific features in microcontrollers
- 10. Distinguish between Von-Neumann and Hardware architecture.

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) Discuss about the embedded systems design process in detail.

Or

- (b) Elaborate on memory management methods.
- 12. (a) Explain the design of a real time robot control system

Or

(b) Discuss about device sensing without using an ISR and device driver ISR.

13. (a) Explain about multithreaded programming with examples.

Or

(b) Discuss clearly about semaphores in embedded systems.

14. (a) Elaborate on Unix as a Real Time Operating System.

Or

- (b) Write about VxWorks, which can be perceived as a Real Time Operating System.
- 15. (a) Discuss about MBasic compiler and development boards.

Or

2

(b) With suitable interfacing diagram explain the PIC microcontroller based control of stepper motor. Also write assembly language program for the same.

41066

POWER SYSTEM OPERATION AND CONTROL

Reg. No. :

Question Paper Code : 71515

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2015.

Seventh Semester

Electrical and Electronics Engineering

EE 2401/10133 EE 701/EE 71 - POWER SYSTEM OPERATION AND CONTROL

(Regulation 2008/2010)

(Common to PTEE 2401/10133 EE 701 - Power System Operation and Control for B.E. (Part-Time) Fifth Semester - Electrical and Electronics Engineering -Regulation 2009/2010)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What is the need for load forecasting in a power system?
- 2. What are the advantages of computer control in power system? What are the types of computer control?
- 3. Find the open loop gain of an Automatic voltage regulator loop if the static error does not exceed 2%.
- 4. Brief the application of secondary ALFC loop in power system networks.
- 5. Show that the shunt compensation improves critical voltage as well as the power factor.
- 6. Distinguish between rotor angle stability and short-term voltage stability.
- 7. Find the incremental transmission losses for a two area power system, where the bus voltages are kept fixed and the line power flow is a function of line angle. Power loss is a function of generation of area B only.
- 8. What is spinning reserve?
- 9. What role SCADA plays in electrical power systems?
- 10. What are responsibilities of regional load dispatch centres?

PART B — (5 × 16 = 80 marks)

11. (a) Compare various stochastical methods of load fore casting.

Or

- (b) Give a detailed account of online techniques for non-stationary load prediction.
- 12. (a) With the block diagram of speed governing system, explain the Automatic Load Frequency Control. Also derive necessary equations.

Or

- (b) A sub-grid has total rated capacity 2500 MW. It encounters a load increase of 50 MW if the normal operating load is 1000 MW. Assume inertia constant (H) to be 5 sec and regulation of the generators in the system as 2 Hz/p.u MW. Find (i) ALFC loop parameters (ii) Static frequency drop, (iii) Transient response of the ALFC loop. Assume load frequency dependency to be linear.
- (a) Derive the relation between voltage and real & reactive powers in a transmission line. Explain the voltage profile variation along the line as the reactive power varies.

Or

- (b) Discuss at length, the effect of transformer on load tap changing on voltage stability.
- 14. (a) Determine the economic operation point for the three thermal units delivering a total load of 600 MW without considering generator limit as well as with considering generator limit. Given:

Unit 1 : maximum output = 600 MW, minimum output = 150 MW

The fuel cost function is $F_1(P_1) = 550 + 7.7 P_1 + 0.00165 P_1^2 Rs/hr$

Unit 2 : coal fired : maximum output = 500 MW, minimum output = 125 MW.

The fuel cost function is $F_2(P_2) = 300 + 7.88 P_2 + 0.002 P_2^2 Rs/hr$

Unit 3 : coal fired : maximum output = 600 MW, minimum output =150 MW

The fuel cost function is $F_3(P_3) = 80 + 7.99 P_3 + 0.005 P_3^2 \text{ Rs/hr}$ Or

- (b) What is priority list method of unit commitment? Explain it with an example.
- 15. (a) What is state estimation with respect to power system? Explain briefly the method of maximum likelihood weighted least squares estimation.

Or

2

(b) What is normal operating state of a power system? Describe in detail the various states that a power system takes, with their operating conditions.

71515

Question Paper Code: 21515

Reg. No. :

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Seventh Semester

Electrical and Electronics Engineering

EE 2401/10133 EE 701/EE 71 - POWER SYSTEM OPERATION AND CONTROL

(Regulations 2008/2010)

(Common to PTEE 2401/10133 EE 701 — Power System Operation and Control for B.E. (Part-Time) Fifth Semester - Electrical and Electronics Engineering -Regulations 2009/2010)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What is the significance of load forecasting?
- 2. What is demand factor?
- 3. What is the advantage of AVR loop over ALFC?
- 4. What is meant by control area?
- 5. What is an exciter?
- 6. What is meant by stability compensation?
- 7. Draw incremental fuel cost curve.
- 8. Define crew constraints.
- 9. What are the states of power system?
- 10. What are the functions of control center?

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a

(a) Explain with help of block diagram the role of computers and implementation in power system control. (16)

Or

 (b) A generating station has the following daily loads. Time (Hours): 0-6 6-10 10-12 12-16 16-20 20-24 Load (MW): 20 25 30 25 35 20

Sketch the load curve, load duration curve and determine

- (i) Maximum demand
- (ii) Units generated per day
- (iii) Average load
- (iv) Load factor.

12. (a) Derive the modeling of fundamental speed governing system.

(16)

(16)

Or

(b) A two area power system has two identical areas with parameters and operating conditions: (16)

Rated capacity of the area = 1500MW

Normal operating load = 750MW

Nominal frequency = 50Hz

Inertia constant of the area = 5 s

Speed regulation = 3%

Damping co-efficient = 1%

Governor time constant = 0.06 s

Turbine time constant = 0.25 s

A load increase M1 = 30 MW occurs in area 1. Determine change in frequency and compare the change in frequency obtained in single area and comment on the support.

 (a) Draw the circuit diagram for a typical excitation system and derive the transfer function model and draw the block diagram. (16)

Or

2

(b) Explain different types of static VAR compensators with a phasor diagram. (16)

21515

K.L.N.C.E./EEE/HAND BOOK/2015-2016/EVEN/VI SEM/RJPP.78

14. (a)

Draw the flow chart for obtaining the optimum dispatch strategy of N-bus system neglecting the system transmission loss. (16)

(b) Obtain an optimum economic schedule of a three generators for a total load of 900MW. (16)

The details of fuel cost functions are given below.

 $F_1 = 392.7 \pm 5.544 \ P_1 \pm 0.001093 \ \ P_1^2 \ ,$

 $F_2 = 217 + 5.495 P_2 + 0.001358 P_2^2$,

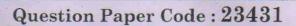
 $F_3 = 65.5 + 6.695 P_3 + 0.004049 P_3^2$,

 P_1, P_2, P_3 in MW :

Generation limits

150 < P_1 < 600MW, 100 < P_2 < 400 MW, 50 < P_3 < 200 MW.

15. (a) Explain the hardware configuration and function of SCADA. (16)


Or

3

(b) Explain the different operating states in the security perspective with an example. (16)

21515

DESIGN OF ELECTRICAL MACHINES

Reg. No. :

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Seventh Semester

Electrical and Electronics Engineering

EE 1403 - DESIGN OF ELECTRICAL APPARATUS

(Regulations 2004/2007)

(Common to B.E. (Part-Time) Sixth Semester - Regulation 2005)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

1. Distinguish between real and apparent flux densities in a DC machine.

- 2. Mention the various cooling methods commonly used for rotating electrical machines.
- 3. Give the need for inter poles in a DC Machine.
- 4. Compare wave winding with lap winding in a DC Machine.
- 5. What is window space factor in a transformer?
- 6. What are the factors on which no load current of a transformer depend?
- 7. Give the relationship between dispersion co efficient and over load capacity in an induction motor.
- 8. What is cogging? How it is avoided in induction motor?
- 9. Define short-circuit ratio of a synchronous generator.
- 10. State merits of computer aided design of electrical machines.

PART B — $(5 \times 16 = 80 \text{ marks})$

A laminated steel tooth of armature of a d.c. machine is 30 mm long and 11. (a) has a taper such that the maximum width is 1.4 times the minimum. Estimate the mmf required for a mean flux density of 1.9 wb/m^2 in the tooth. B-H characteristics of steel is given below : (16)

B_{wb}/m^2 :	1.6	1.8	1.9	2.0	2.1	2.2	2.3	
H _{A/m} :	3,700	10,000	17,000	27,000	41,000	70,000	1,09,000	

\mathbf{Or}		
$0\mathbf{r}$		

- Determine the apparent flux density in the teeth of a d.c. machine when (b) the real flux density is 2.15 web/ms. Slot pitch is 28 mm, slot width is 10 mm and the gross core length 0.35 metre. The number of ventilating ducts is 4. Each duct is 10 mm wide. The magnetizing force for a flux density of 2.15 wb/m² is 55000 H/m. The iron stacking factor is 0.9. (16)
- 12. (a) Find the main dimensions of a 200 kW, 250 volts, 6 pole, 1000 rpm DC generator. The maximum value of flux density in the air gap is 0.87 wb/m² and the ampere conductors per metre length of armature periphery are 31000. The ratio of pole arc to pole pitch is 0.67 and the efficiency is 91 percent. Assume that the ratio of length of core to pole (16)pitch = 0.75.

Or

- A rectangular field coil of a dc machine is to produce an mmf of 7500 ampere turns when dissipating 220 watts at a temperature of 60°C. The inner dimensions of the coil are length = 0.24 metre. Width = 0.1 metre. Height of the coil = 0.15 metre. The heat dissipation is 30 w/m²/°C from the outer surface neglecting the top and bottom surfaces of the coil. The temperature of the ambient air is 20°C. Compute the thickness of the coil. Resistivity of copper is 0.02 Ω/m and mm². (16)
- 13. (a) Determine the dimensions of core mid yoke for a 200 KVA, 50 Hz single phase core type transformer. A cruciform core is used with distance between adjacent limbs equal to 1.6 times the width of core laminations. Assume voltage per turn of 14 volts, maximum flux density of 1.1 web/m², window space factor of 0.32, current density of 3 A/mm² and stacking factor equal to 0.9. The net iron area is 0.56 d^2 where d is diameter of circumscribing circle. Width of the largest stamping is 0.85 d. (16)

Or

Derive the output equation of a three phase transformer. (b) (i)

2

State different methods of cooling the transformers and explain (ii) each method with relevant diagrams. State merits and limitations of each method.

23431

(8)

Determine the main dimensions, number of stator turns per phase, full load current, cross section of conductors and total I²R loss of stator of a 120 kW, 2200 V, 3-phase, 750 rpm, 50 Hz, star connected slip-ring induction motor from the following particulars :

Average flux density in the gap = 0.47 Wb/m^2 Specific electric loading = 27000 ampere-conductors per metre; Efficiency = 93%; Power factor = 0.88; Winding factor = 0.955; current density = 5 A/mm^2 mean length of stator conductors = 77 cm; Resistivity = $0.021 \text{ }\Omega/\text{m}$ and mm² cross section. Choose the main dimensions to give a design for best power factor. (16)

Or

- (b) (i) Bring out clearly, with the help of neat sketches, the differences between the 3-phase slip ring induction motor and the 3-phase squirrel cage induction motor.
 (8)
 - (ii) A 11 kW, 3 phase, 6 pole, 50 Hz, 220 V, star connected induction motor has 54 stator slots, each containing 9 conductors. Calculate the values of bar and end ring currents. The number of rotor bars is 64. The machine has an efficiency of 0.85 and a power factor of 0.86. The rotor mmf may be assumed as 87% of stator mmf. Also find the area of each bar and end ring if the current density is 5 A/mm². (8)
- 15. (a)
- (i) Derive the output equation of AC Machine.
 - (ii) Discuss the effects of specific electric loading on the performance of Synchronous Machine.
 (8)

Or

3

- (b) (i) Discuss the effects of Short Circuit Ration on Stability and Short Circuit Current of Synchronous Motor. (8)
 - (ii) Estimate the diameter and core length of a 15 MVA, 11 kv, 50 Hz, 2 pole star connected turbo alternator with 60° winding space spread. Assume Bay = 0.55 Wb/m²; ac = 36000 A/m and peripheral speed = 160 m/s.

23431

(8)

Reg. No. :

Question Paper Code: 71513

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2015.

Sixth Semester

Electrical and Electronics Engineering

EE 2355/EE 65/10133 EE 605 — DESIGN OF ELECTRICAL MACHINES

(Regulation 2008/2010)

(Common to PTEE 2355/10133 EE 605 – Design of Electrical Machines for B.E. (Part-Time) Fifth Semester – Electrical and Electronics Engineering – Regulation 2009/2010)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

1. Define specific electric loading.

2. What are the factors that affect the size of rotating machine?

3. Why square pole face if preferred?

4. Define copper space factor of a coil?

5. What are the advantages of stepped cores?

6. Why circular coils are preferred in transformer?

7. How the induction motor can be designed for best power factor?

8. Where mush winding is used?

9. Distinguish between cylindrical pole and salient pole construction.

10. How the dimensions of induction generator differ from that of an induction motor?

PART B - (5 × 16 = 80 marks)

11. (a) (i)

- Discuss the advantages of hydrogen cooling.
 - The exciting coil of an electromagnet has a cross section of (ii) $120 \times 50 \text{ mm}^2$ and a length of mean turn 0.8m. It dissipates 150 W continuously. Its cooling surface is 0.125 m² and specific heat dissipation is 30 W/m²-°C. Calculate the final steady temperature rise of the coil surface. Also calculate the hot spot temperature rise of the coil if the thermal resistivity of insulating material used is $8\Omega m$. The space vector is 0.56. (8)

Or

- Describe the classification of insulating materials used for electrical (i) (b) (8) machines.
 - The temperature rise of a transformer is 25°C after one hour and (ii) 37.5°C after two hours of starting from cold conditions. Calculate its final steady temperature rise and the heating time constant. If its temperature falls from the final steady value to 40°C in 1.5 hour when disconnected, calculate its cooling time constant. The ambient (8)temperature is 30°C.
- Explain various steps involved in the design of shunt field winding of 12. (a) dc machine. (16)

Or

- Determine the air gap length of a dc machine from the following (b) (i) particulars : gross length of core = 0.12, number of ducts =one and 10mm wide, slot pitch = 25mm, slot width = 10mm, carter's coefficient for slots and ducts = 0.32, gap density at pole centre = 0.7 wb/m²; field mmf/pole = 3900AT, mmf required for iron parts of (8) magnetic circuit = 800AT.
 - A 5 kW, 250V, 4 pole, 1500 r.p.m. shunt generator is designed to (ii)have a square pole face. The loadings are :

Average flux density in the gap = 0.42 Wb/m² and ampere conductors per metre = 15,000. Find the main dimensions of the machine. Assume full load efficiency = 0.87 and ratio of pole arc to (8)pole pitch = 0.66.

- Derive the output equation of single phase transformer in terms of 13. (a) (i) (8)core and window area.
 - A 3 phase, 50Hz, oil cooled core type transformer has the following (ii) dimensions : Distance between core centers = 0.2m, Height of window = 0.24m. Diameter of circumscribing circle = 0.14m. The flux density in the core = 1.25Wb/m², the current density in the conductor = 2.5A/mm². Assume a window space factor of 0.2 and the core area factor = 0.56. The core is 2 stepped. Estimate kVA rating (8)of the transformer.

Or

2

71513

(8)

- (b) A 250kVA, 6600/400V, 3 phase core type transformer has a total loss of 4800W at full load .The transformer tank is 1.25 m in height and 1 × 5 m² in plan. Design a suitable scheme for tubes if the average temperature rise is to be limited to 35°C. The diameter of tubes is 50mm and are spaced 75mm from each other. The average height of tubes is 1.05m. Specific heat dissipation due to radiation and convection is respectively 6 and 6.5 W/m².°C. Assume that convection is improved by 35 percent due to provision of tubes. (16)
- 14. (a) Write short notes on :

(16)

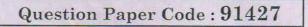
(i) Design of rotor bars and slots

(---

(ii) Design of end rings.

Or

- (b) A 15kW, 440V, 4 pole, 50 Hz, 3 phase induction motor is built with a stator bore 0.25 m and a core length of 0.16 m. The specific electric loading is 23000 ampere conductors per metre. Using the data of this machine, determine the core dimensions, number of stator slots and number of stator conductors for a 11 kW, 460V, 6 pole, 50 Hz motor. Assume a full load efficiency of 84 per cent and power factor of 0.82 for each machine. The winding factor is 0.955. (16)
- 15. (a) (i) Describe the construction of turbo alternator with neat sketch. (8)
 - (ii) For a 250kVA, 1100V, 12 pole, 500rpm, 3 phase alternator, determine core diameter and core length. Assuming average gap density as 0.6wb/m² and specific electric loading of 30,000 amp.cond/m, L/τ=1.5.


Or

3

(b) Determine the output coefficient for a 1500kVA, 2200Volts, 3 phase, 10 pole, 50Hz, star connected alternator with sinusoidal flux distribution. The winding has 60° phase spread and full pitch coils. ac = 30000 amp.cond/m, Bav = 0.6 Wb/m². If the peripheral speed of the rotor must not exceed 100 m/sec and the ratio pole pitch to core length is to be between 0.6 and 1, find D and L. Assume an air gap length of 6 mm. Find also the approximate number of stator conductors. (16)

71513

Reg. No. :

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2014.

Sixth Semester

Electrical and Electronics Engineering

EE 2027/EE 604/10133 EEE 16 - POWER SYSTEM TRANSIENTS

(Regulation 2008/2010)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

1. What is a transient?

2. Write the mathematical expression for transient due to RLC circuits?

3. What is Ferro resonance?

4. Why multiple restrike occur due to capacitance switching?

5. What is the rate of charging of thunder clouds?

- 6. What is a tower footing resistance?
- 7. What is a standing wave?
- 8. What is Bewely's lattice diagram?
- 9. Mention the features of EMTP.
- 10. What is a short line fault?

				PART B — $(5 \times 16 = 80 \text{ marks})$	
	11.	(a)	(i)	Explain the significance in the study of transients in the sys planning.	stem (10)
			(ii)	Write a short note on double frequency transients.	(6)
				Or	
		(b)	Disc	cuss in detail about the various types of power system transients.	(16)
	12.	(a)	circu	lain the transients due to load switching and develop the equiva uit. Also draw and explain the waveforms for transient voltage ac load and the switch.	dent ross (16)
				Or	
1.00		(b)	(i)	Describe about the normal and abnormal switching transients.	(8)
			(ii)	Write a short note on resistance switching and develop equivalent circuit.	the (8)
	13.	(a)	(i)	Discuss the theory in the formation of clouds.	(8)
			(ii)	Discuss the factors contributing to good line design.	(8)
				Or	
		(b)	(i)	Develop and describe the model for lightning stroke.	(8)
			(ii)	Explain the characteristics of lightning stroke.	(8)
	14.	(a)	Disc	cuss in detail about the reflection and refraction of traveling wave	es. (16)
				Or	
		(b)		cribe the transient response of systems with series and shunt lur ameters.	nped (16)
	15.	(a)	(i)	With a neat schematic diagram, explain the distribution of volt in the power system.	tages (10)
			(ii)	Explain briefly about the switching surges on integrated system	n. (6)
				Or	
		(b)	(i)	Explain the occurrence of over voltages in power systems defaults.	ue to (10)
			(ii)	Write short note line dropping and load rejection.	(6)
				2 9	1427

Reg. No. :

Question Paper Code : 71487

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2015.

Sixth Semester

Electrical and Electronics Engineering

EE 2027/EE 604/10133 EEE 16 - POWER SYSTEM TRANSIENTS

(Regulation 2008/2010)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What are the causes of transients?
- 2. Write the basic transform of RLC circuit transient.
- 3. What is current suppression?
- 4. Define ferro resonance.
- 5. What are the types of protection afforded by ground wires?
- 6. Define tower footing resistance.
- 7. What is the importance of Bewley's Lattice Diagram?
- 8. Draw the equivalent circuit for an infinitesimal element of a line.
- 9. Distinguish between line dropping and load rejection.
- 10. Define kilo metric fault.

PART B --- (5 × 16 = 80 marks)

11. (a) What are the various types of power system transients? With neat diagrams, describe any two types of power system transients in detail.(16)

Or

(b) (i) Discuss about the effects of transients on power systems. (8)
 (ii) Briefly explain the importance of study of transients in planning. (8)

X		
12.	(a)	 Explain the load switching in both normal and abnormal conditions with neat sketches. (8)
		(ii) Explain current chopping with appropriate equivalent circuit. (8)
		Or
	(b)	What is capacitance switching? Explain in briefly about capacitance switching with one and multiple restrikes. (16)
13.	(a)	(i) Explain in detail how the charges are formed in the clouds. (8)
		(ii) With a neat sketch, explain the characteristics of lightning strokes.(8)
		Or
	(b)	(i) Derive the mathematical model for lightning. (8)
		(ii) Describe the interaction between lightning and power system. (8)
14.	(a)	Explain the steps involved in Bewley's Lattice diagram construction with an example. (16)
		Or
	(b)	 Discuss transient response of systems with series and shunt lumped parameters and distributed lines. (8)
		(ii) Derive the refraction coefficients of a traveling wave. (8)
15.	(a)	(i) Describe how the voltage is distributed in a power system. (8)
		(ii) Derive the voltage transients on reclosing lines. (8)

Or

2

(b) Explain in detail how EMTP is used for the computation of transients in power system. (16)

71487

Placement Activity – Reminder

- In the month of October every first year students must fill forms online in TATA CONSULTANCY SERVICES (TCS) campus recruitment using <u>nextsteptcs.com</u> website and must submit the following documents in the department.
 - a. SSLC and HSC mark sheet photo copy at least 5.
 - b. Latest passport size Photo at least 5.
 - c. Current address proof with parent contact cell numbers.
 - d. Create your own two E-mail id using Gmail.
 - e. Resume with Scanned copy of passport size Photo.
 - f. CT number registered in the TCS website.
- 2. Every semester end update CGPA in your resume and TCS profile.
- 3. An Engineering student from Electrical and Electronics Engineering should complete the following courses in order to enhance their software skills. This will be most helpful during their successful completion in Curriculum during 4th Semester and in the software company campus recruitment.
 - a. Should complete **C Programming** before joining 2nd Semester.
 - b. Should complete C++ Programming before joining 3rd Semester.
 - c. Should complete JAVA Programming before joining 4th Semester. (for the successful completion of object oriented Programming theory paper and laboratory during 4th Semester)
- 4. An Engineering student from Electrical and Electronics Engineering should complete the Micro Processor, Micro Controller and Embedded Systems courses before joining 5th Semester in order to enhance their Hardware skills. This will be most helpful during their successful completion in Curriculum from 5th to 6th Semester and in the Core company campus recruitment. (for the successful completion of Micro Processor and Micro Controller theory as well as laboratory during 5th Semester and Embedded Systems during 6th Semester)
- 5. From 6th Semester Summer vacation onwards all should prepare for GATE Examination because all Engineering students from Electrical and Electronics Engineering should appear GATE Examination in order to settle in their life by pursuing higher education in the reputed colleges like IIT, NIT and Anna University or else to join as a Graduate Engineer trainee in a public sector companies like IOC, BHEL, PGCI etc.,
- 6. Before joining 7th Semester all should get any international certification programme course like OCJP, CCNA, etc., and upload the certification details in TCS campus commune website. This will be most helpful during the TCS campus and other MNC company recruitment.

A	Semester								
Activity	1	2	3	4	5	6	7	8	
TCS Online form Filling in <u>nextsteptcs.com</u>	In the month of October								
Documents to be submitted in the EEE Department/ Placement Coordinator	 a.SSLC and HSC mark sheet photo copy at least 5. b. Latest passport size Photo at least 5. c.Current address proof with parent contact cell numbers. d. Create your own two E-mail id using Gmail. e.Resume with Scanned copy of passport size Photo. f. CT number registered in the TCS website. 								
Updating CGPA in resume and TCS online profile	✓	*	~	~	1	*	~	*	
C Programming	✓	✓							
C++ Programming		~							
JAVA Programming			~						
Micro Processor & Micro Controller				~					
Embedded Systems					~				
GATE / UPSC/ TNPSC Preparation			~	~	~	~	~		
International Certification – OCJP / CCNA						1	~		

Placement Recruitment - Requirement and Selection (PKA)

Reminders - SMK / Clerk

K.L.N.College of Engineering

Department of Electrical and Electronics Engineering.

Reminders/Remember these for peaceful career.

I. General

- Keep at least 5 photocopies of birth certificate, ration card, Voters ID card, College ID card, Aadhar card, 10th,+2 mark sheets, 10th/+2 Transfer Certificates,[* all proofs to be kept in your bag, in your house and in your mail, all kept in a water proof file-remember Chennai flood]. This will be required at anytime, anywhere.
- 2. Apply for Savings Bank account in any of the nationalized banks in first year. Apply for LIC schemes, saving schemes right from the first year. [*Refer]
- 3. Get Driving license during third year of your Degree course[*Refer]
- 4. Get Passport before the completion of 6th semester. [*Refer]
- 5. Always keep ID card issued by competent authority while moving from one city to another/ one state to another. It is better to wear ID card always.(except during bathing).
- 6. Never share your username and password of mail accounts to anyone even in your home/ to teachers/ friends. Never reply to un trusted mail/fake messages. Never transfer/ deposit money to any unknown mail. Beware of fraud/cheating by any one.
- 7. Share only legal, ethical, non-political, educational, and value based information/ photos/videos with your friends or any others through social media. Posting of illegal/political/unethical/ information/comments will spoil your career. <u>Remember that all</u> <u>such communications in social media/mails are continuously monitored and recorded by</u> <u>intelligent agencies in the country and abroad, due to security threats.</u>
- Don't involve teasing of students of your class, juniors or seniors in the classrooms, laboratories or in hostels. Don't loan the cell phone to anyone. Also don't keep your cell phone easily accessible by anyone.
- Don't send obscene messages or pictures through cell phones/ internet to anyone. Defaulters
 will be easily tracked by Cyber Crime Agencies. Don't purchase/loan someone's
 laptop/mobile phone, due to theft complaints.
- 10. Avoid two wheeler riding for long travelling, and night travelling. Wear helmet. Follow traffic rules. Lot of accidental deaths reported due to negligence of traffic rules. About 1.5lakhs of people lost their life in accidents in our country every year.

11. For any transaction of money, use cheques or bank accounts(for more than Rs. 10,000/-) because finding fake notes is difficult.

12. Always keep 10 passport and stamp size photographs, 10 no.s of revenue stamps, all ID proofs whenever going for banks/pass port office.

- Keep at least email ids and good friendship of 25 students of your branch who have been placed in different companies. Collect background information on core/IT companies(minimum 25)
- 14. Develop good reading habit/read News papers daily/watch news channel daily/Watch films nominated for Oscar award.Watch channels like Discovery/Nat Geo/History/ any other news channels.(not more than an hour)
- 15. Speak in English only. Develop good writing skills by reading books.
- 16. Have a Desk top/Laptop, Printer before entering 5th semester.
- 17. Have internet facility in home for educational purpose.Keep all NPTEL material.
- 18. Keep all kind of stationary in your table for use at any time[pencil, sharpener, eraser, ball point pen of different colours, sketches, bell clip, stapler, single punch, tag, gum, knilfe,scissors,A4 paper, cello tap, emergency lamp, scale, protractor, compass, pen drive, CD, whitener, calculator, diary, stapler pin box]

II. Education:

- 20 Download Anna University examination results immediately after the publication of result from AU website. Mark sheet attestation will not be given without the above copy
- 21 Always keep 5 copies of AU mark sheets, of each semester. Post it on your mail.
- 22. Discrepancy in mark sheets such as Name, Date of Birth, CGPA awarded, register number should be corrected immediately.
- 23. Always keep Rs 5,000/- in a semester for the payment of Book fee/AU exam fee/Training fee/purchase of competitive exam books/Educational tour/seminar/additional course/ certification course etc. Educate your parents for the above. This may be required in a particular month or in several months spread in a semester.
- 24. Enroll in IEEE membership during first/second year. Attend at least one programme at Chennai.
- 25. Collect 5 sets of AU question papers, subject wise, in a semester(within 10 days)
- 26. Prepare good quality Resume. Consult TPO, placed final year students. Resume preparation is an art that ensures your quality and getting jobs in reputed concern. Update your resume, monthly (by attending value added courses, online courses, co-curricular and extracurricular activities, publishing articles in conferences, symposium, technical events, journals,News papers, inplant training, internship, new languages learnt, project developed, industrial visits, social services participated etc.)
- 27. Attend any courses after consulting with HOD/senior staff to avoid courses not suited to your branch.
- 28. Purchase text/reference books every semester.

- 29. Purchase competitive exam books, like Objective type QB,GATE/TANCET/IES/IAS and prepare for the exams from second year onwards.
- 30. Collect aptitude/reasoning/analytical/numerical/verbal/test questions from the placed students or download from the website. For successful placement, preparation from the first year in the above topics is required.
- 31. Collect information like Product, clients, branches, head office, annual turnover, GM,CEO, etc of 25 core companies, and 25 software companies.
- 32. Attend atleast one seminar/workshop/ paper presentation contest per semester, applicable to your branch of study.
- 33. Plan your study for current subject/assignment work/observation work/record work/aptitude training for technical /non-technical daily/weekly/monthly.
- 34. Decide & justify clearly, your objective before 6th semester and plan accordingly. Options are placement(ON/OFF) in core/IT companies, higher studies/ civil services, parents business, start your own business. Confused mind never take a decision.
- 35. Attend inplant training(Min:one week,Max:One month) during semester holidays. Avoid industrial visit (Energy waste) and educational tour (Money waste).
- 36. Do mini project in second, third year of your study .Update these in final year.Project should be based on the need of the society/industry.

III. Health

- 37. Health is wealth. Read Dalailama statement on life of a man. We work hard, earn and save money sacrificing our health. Later we spent lot of money for medical treatment due to poor healthcare.
- 38. Have regular exercise either in the forenoon/evening. (an hour walk is must everyday).
- 39. Your food habits decides what you are and how long you will live with peace. Avoid junk foods/road side eatery. Use hot water for drinking.
- 40. Consult doctors in case of health problems. Periodical medical checkup, once in 6 months, is necessary for health and dental care. This may require Rs.2,000/- per year. Otherwise you need to pay a lot. It is advisable to stay in a house, within 500 metre (walk able distance) from a multispecialty hospital, otherwise 250 meters from any hospital. This is required to tackle emergency situations and also to avoid paying more for transport.
- 41. Avoid roaming/walking during summer/rainy season.
- 42. Attend yoga classes/ do meditation.
- 43. Apply group insurance medical policy at the age of 20.
- 44. Follow ethics and be Nationalistic.

Advanced Training Institute Skill Development and Entrepreneurship Programmes Ref: Advanced Training Institute, CTI Campus, Guindy Industrial Estate, Chennai – 600 032. Phone No.: 044- 2250 0252/1211, E mail : <u>atichn@vsnl.com</u>, <u>www.ati.chennai.org.in</u> GROUP – I ELECTRICAL CONTROL & MAINTENANCE

Course Coordinator

1. Shri. M.S. Ekambaram, Dy.Director

	e, Training Officer.	Destination	Da	ate
Course Code	Course Title	Duration weeks	From	То
			13.04.2015	17.04.2015
			18.05.2015	22.05.2015
			22.06.2015	26.06.2015
			27.07.2015	31.07.2015
01.01	Protective Relays, Circuit Breakers, &	01	24.08.2015	28.08.2015
01.01	Switch Gear Protection	01	21.09.2015	25.09.2015
			12.10.2015	16.10.2015
			07.12.2015	11.12.2015
			15.02.2016	19.02.2016
			21.03.2016	24.03.2016
			06.04.2015	10.04.2015
			11.05.2015	15.05.2015
			15.06.2015	19.06.2015
			20.07.2015	24.07.2015
01.02	Operation & Maintenance of Power Transformers	01	14.09.2015	18.09.2015
			30.11.2015	04.12.2015
			08.02.2016	12.02.2016
			07.03.2016	11.03.2016
			21.03.2016	24.03.2016
			20.04.2015	24.04.2015
	Trouble Shooting & Maintenance of Electric Motors		08.06.2015	12.06.2015
			29.06.2015	03.07.2015
01.02		01	03.08.2015	07.08.2015
01.03			07.09.2015	11.09.2015
			23.11.2015	27.11.2015
			01.02.2016	05.02.2016
			29.02.2016	04.03.2016
			25.05.2015	29.05.2015
			13.07.2015	17.07.2015
01.04	Operation and Control of Industrial AC / DC	01	17.08.2015	21.08.2015
01.04	Motors	01	26.10.2015	30.10.2015
			18.01.2016	22.01.2016
			14.03.2016	18.03.2016
			27.04.2015	01.05.2015
			01.06.2015	05.06.2015
			06.07.2015	10.07.2015
01.05	Electrical Safety at work place and first aid	01	10.08.2018	14.08.2015
01.05	Practices	01	28.09.2015	01.10.2015
			14.12.2015	18.12.2015
			04.01.2016	08.01.2016
			22.02.2016	26.02.2016

GROUP – I ELECTRONIC CONTROL & MAINTENANCE

Course Coordinator

Dr.M.Jayaprakasan, Dy.Director
 K.Arulselvi, Training Officer.

Course Code	Course Title	Duration	Date		
Course Code	Course Title	weeks	From	То	
			13.04.2015	24.04.2015	
	Siemens S7 400 PLC & win CC SCADA / HMI – Programming (TIA portal)		06.07.2015	17.07.2015	
02.01		02	14.09.2015	25.09.2015	
			16.11.2015	27.11.2015	
			01.02.2016	12.02.2016	
			15.06.2015	19.06.2015	
02.00.2	PLC Siemens S7 400 Programming with step 7	01	26.10.2015	30.10.2015	
			04.01.2016	08.01.2016	

			07.03.2016	11.03.2016
			27.04.2015	08.05.2015
02.03	Maintenance & Completing of SMDS and LIDS	02	20.07.2015	31.07.2015
02.05	Maintenance & Servicing of SMPS and UPS	02	30.11.2015	11.12.2015
			15.02.2016	26.02.2016
			15.06.2015	26.06.2015
02.04	Industrial Drives & Automation using Siemens PLC	02	31.08.2015	11.09.2015
			18.01.2016	29.01.2016
	Installation Commissioning & Trouble Shooting of AC / DC		18.05.2015	22.05.2015
02.05	Installation, Commissioning & Trouble Shooting of AC / DC Drives	01	03.08.2015	07.08.2015
	Drives		18.01.2016	22.01.2016
	PLC Siemens S7 400 Maintenance and Trouble Shooting		25.05.2015	29.05.2015
02.06		01	10.08.2015	14.08.2015
02.00		01	02.11.2015	06.11.2015
			21.03.2016	24.03.2016
			01.06.2015	05.06.2015
02.07	Embedded System Programming & Applications (PIC 16F	01	24.08.2015	28.08.2015
02.07	877)	01	05.10.2015	09.10.2015
			14.12.2015	18.12.2015
02.08	Embedded Systems Programming & Applications (ARM 7	01	08.06.2015	12.06.2015
02.08	PLC 2378)	01	28.12.2015	01.01.2016
02.09	Power Electronics and its Industrial Applications	02	20.07.2015	31.07.2015
02.09	Fower Electronics and its industrial Applications	02	30.11.2015	11.12.2015

GROUP – I PROCESS CONTROL INSTRUMENTATION

Course Coordinator1.Dr.M.Jayaprakasan, Dy.Director2.M.Gunaseklharan, Training Officer.

Course Code	Course Title	Duration weeks		nte
Course Coue	Course Title	Duration weeks	From	То
	Agilent Veepro Graphical Programming for Industrial		13.04.2015	17.04.2015
03.01	Instrumentation	01	07.09.2015	11.09.2015
	Instrumentation		23.11.2015	27.11.2015
			20.04.2015	24.04.2015
03.02	Embedded System and its Application using P89C551rd2	01	29.06.2015	03.07.2015
03.02	Embedded System and its Application using 189C5511d2	01	05.10.2015	09.10.2015
			07.12.2015	11.12.2015
			18.05.2015	22.05.2015
03.03	Industrial Automation using GE-GANUC PLC	01	10.08.2015	14.08.2015
03.03	Industrial Automation using OE-OANOC FLC	01	28.12.2015	01.01.2016
			29.02.2016	04.03.2016
			27.04.2015	01.05.2015
			13.07.2015	17.07.2015
03.04	PLC Allen Bradley SLC 500 Programming & Applications	01	24.08.2015	28.08.2015
03.04		01	26.10.2015	30.10.2015
			04.01.2016	08.01.2016
			15.02.2016	19.02.2016
			11.05.2015	15.05.2015
03.05	Mixed Signal VLSI Design using PSOC	01	07.09.2015	11.09.2015
			16.11.2015	20.11.2015
		01	25.05.2015	29.05.2015
			17.08.2015	21.08.2015
03.06	Configuration Networking & Troubleshooting of PLC		28.09.2015	01.10.2015
			18.01.2016	22.01.2016
			07.03.2016	11.03.2016
			01.06.2015	05.06.2015
			06.07.2015	10.07.2015
02.07	Testing and Calibration of Industrial Instruments (Pressure and	01	07.09.2015	11.09.2015
03.07	Temperature)	01	12.10.2015	16.10.2015
	•		30.11.2015	04.12.2015
			25.01.2016	29.01.2016
			08.06.2015	19.06.2015
00.00			14.09.2015	25.09.2015
03.08	PLC & SCADA Based Industrial Automation using AB PLC	02	14.12.2015	24.12.2015
			01.02.2016	12.02.2016
			06.04.2015	17.04.2015
		c -	20.07.2015	31.07.2015
03.09	Basic Industrial Instrumentation & Automation	02	02.11.2015	13.11.2015
			14.03.2016	24.03.2016

Tips for Effective Communication

Have courage to say what you think. <u>Be confident</u> in knowing that you can make worthwhile contributions to conversation. Take time each day to be aware of your opinions and feelings so you can adequately convey them to others. Individuals who are hesitant to speak because they do not feel their input would be worthwhile need not fear. What is important or worthwhile to one person may not be to another and may be more so to someone else.

Practice. Developing advanced communication skills begins with simple interactions. Communication skills can be practiced every day in settings that range from the social to the professional. New skills take time to refine, but each time you use your communication skills, you open yourself to opportunities and future partnerships.

<u>Make eve contact</u>. Whether you are speaking or listening, looking into the eyes of the person with whom you are conversing can make the interaction more successful. Eye contact conveys interest and encourages your partner to be interested in you in return.

Use gestures. These include gestures with your hands and face. Make your whole body talk. Use smaller gestures for individuals and small groups. The gestures should get larger as the group that one is addressing increases in size.

Manifest constructive attitudes and beliefs. The attitudes you bring to communication will have a huge impact on the way you compose yourself and interact with others. Choose to be <u>honest</u>, <u>patient</u>, <u>optimistic</u>, <u>sincere</u>, respectful, and accepting of others. <u>Be sensitive to other</u> <u>people's feelings</u>, and believe in others' competence.

Develop effective <u>listening</u> skills: Not only should one be able to speak effectively, one must listen to the other person's words and engage in communication on what the other person is speaking about. Avoid the impulse to listen only for the end of their sentence so that you can blurt out the ideas or memories your mind while the other person is speaking.

Enunciate your words. Speak clearly and don't mumble. If people are always asking you to repeat yourself, try to do a better job of articulating yourself in a better manner.

Pronounce your words correctly. People will judge your competency through your vocabulary. If you aren't sure of how to say a word, don't use it.

Use the right words. If you're not sure of the meaning of a word, don't use it. Grab a dictionary and start a daily habit of learning one new word per day. Use it sometime in your conversations during the day.

Slow your speech down. People will perceive you as nervous and unsure of yourself if you talk fast. However, be careful not to slow down to the point where people begin to finish your sentences just to help you finish.

Developing Leadership Skills

No one is a born leader; everyone can develop leadership skills and everyone can benefit from using them. First, take time to honestly analyze yourself. Learn to understand yourself.

It's the first step to understanding others. Consider these important questions:

- 1. What kind of leader am I? One who helps to solve problems? A leader who helps people get along? How do others see me as a leader?
- 2. What are my goals, purposes, and expectations in working with this particular group? Identify areas for improvement.

Ask yourself these questions:

- 1. Do I try to be aware of how others think and feel?
- 2. Do I try to help others perform to the best of their abilities?
- 3. Am I willing to accept responsibility?
- 4. Am I willing to try new ideas and new ways of doing things?
- 5. Am I able to communicate with others effectively?
- 6. Am I a good problem solver?
- 7. Do I accept and appreciate other perspectives and opinions?
- 8. Am I aware of current issues and concerns on campus or in my community?

Then after analyzing your strengths and weaknesses -- take action

Devise a strategy for upgrading your skills. Here are a few strategies to consider:

1) Communicate effectively:

Effective communication is dialogue. Barriers are created by speaking down to people, asking closed questions that elicit yes or no answers, using excessive authority, and promoting a culture that depends on unanimity. If your focus is winning the argument or if you react defensively to criticism, you'll create fear of openness and hinder the organization's growth.

Try these steps to effective communication:

- Listen actively ask open questions. Be genuinely interested in what other's say.
- Thank people for their openness -- stress how much you value it -- even if you don't like specifically what is being said.
- Point to areas of agreement before jumping on areas of disagreement this reduces defensiveness; members wont fear being "attacked."

• Set aside your authority to create an atmosphere of partnership to reduce fear in group members.

• Promote a culture of constructive dissent - though not to the point of paralysis.

• Portray disagreement as simply a difference of opinion. Get rid of the "I'm right, you're wrong" attitude.

2) Encourage enthusiasm and a sense of belonging. Show:

• Friendliness: others will be more willing to share ideas if you're interested in them as people too.

• Understanding: everyone makes mistakes. Try to be constructive, tolerant and tactful when offering criticism.

• Fairness: equal treatment and equal opportunity lead to an equally good effort from all group members.

• Integrity: members will take tasks more seriously if you show that you're more interested in group goals than your own personal gain.

3) Keep everyone working toward agreed upon goals:

• Remind everyone of the group's purposes from time to time. It's easy to become too narrowly focused and lose sight of the larger goals.

• Provide encouragement and motivation, by showing your appreciation for good ideas and extra effort.

• Harmonize differences and disagreements between group members by stressing compromise and cooperation.

• Involve everyone in discussions and decisions, even if asking for opinions and ideas means a longer discussion.

4) Get to know the people around you Everyone has different abilities, wants, needs, and purpose in life.

To get along with others and get results, you need to get to know them.

- Interact with group members as often as possible. The only way to get to know someone is through direct personal contact.
- Become familiar with every member of your group. Take note of each person's unique qualities and characteristics.

5) Treat others as individuals

Put your knowledge and understanding of each group member to work!

- Be aware of expectations. Everyone expects something different: recognition, a chance to learn, a chance to work with other people, etc.
- Be creative. A repetitious routine can cause boredom. A successful leader thinks of new and better approaches to old ways of doing things.

• Provide rewards. Recognition by the group is a source of personal satisfaction and positive reinforcement for a job well done.

• Delegate responsibilities. If everyone shares the work, everyone can share pride in the group's accomplishments. Let each member know what's expected of him/her, available resources, deadlines, etc.

6) Accept responsibility for getting things done

• Take the initiative. Why stand around and wait for someone else to get things started? Set an example.

- Offer help and information. Your unique knowledge and skills may be just what's needed.
- Seek help and information. Ask for advice if you need it. This will encourage group involvement and help accomplish group goals.

• Make things happen. By being decisive, energetic, and enthusiastic, you can and will help get things done!

• Know when and how to say "no."

If your time and resources are already committed, turn down extra tasks, but do it nicely.

7) Problem solve in a step - by-step way

Whether you are faced with a decision to make or a conflict to resolve, following a logical approach will help.

1. State the problem as simply and clearly as possible.

2. Gather all relevant information and available resources.

- 3. Brainstorm as many ideas or solutions as you can think of (with others if possible).
- 4. Evaluate each idea or solution and choose the best one.

5. Design a plan for using your idea or solution. Include a timetable, assigned roles, and resources to be used.

6. Follow up on your plan by asking if your idea worked and why or why not.

K.L.N.COLLEGE OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

TANCET - M.E/M.Tech - Model Question Paper

NG 27

PART 01 - MATHEMATICS

(Common to all candidates)

(Answer ALL questions)

1.	The u	nit normal to the st	urface 4.	If	$\overline{A} = x^2 y i - 2xz \overline{j} + 2yz \overline{k}$, then			
	x^2y+2x	z = 4 at the point (2, -2, 3) is		$curlcurl\overline{A}$ is				
	1. <i>-i</i>	$+2j+2\overline{k}$		1.	$(x+2)\overline{j}$			
				2.	$(2x+2)\overline{j}$			
	2. $\frac{1}{3}$	$(-i+2j+2\overline{k})$		3.	$(2x+1)\overline{j}$			
	1			4.	$(2x+2y)\overline{j}$			
	3. $\frac{1}{3}$	$(i-2j+2\overline{k})$	_	70	\overline{W} ($\sim 0 \sim 10^{-10}$) $\sim 10^{-10}$			
	4. <i>i</i> –	$2i - 2\overline{b}$	5.		$\overline{V} = (x + 2y + az)i + (bx - 3y - z)\overline{j} + + cy + 2z)\overline{k}$ is irrotational, then			
	ч. _с —	2j - 2k			a = 4, b = -1, c = 2			
	_	(1)			a = 2, b = -1, c = 4			
2.	If $r = \sqrt{x}$	$\overline{z^2 + y^2 + z^2}$, then $V\left(\frac{1}{r}\right)$ is equ	al to		a = 4, b = 2, c = -1			
	\overline{r}			4.	a = 4, b = -2, c = 1			
	1. $\frac{r}{r^3}$		60	Whic	ch of the following is a factor of the			
	\overline{r}		010		minant?			
	2. $\frac{\overline{r}}{r^2}$				b+2c a b			
	$-\overline{r}$	\overline{r}			$ b + 2c a b \\ c b + c + 2a b \\ c a c + a + 2b $			
	3. $\frac{-\bar{r}}{r^2}$							
	4. $\frac{-r}{r^3}$			1. 2.	а а - b			
	4. r^3				a+b			
					a+b+c			
3.		${}^{2}zi - 2y^{3}z^{2}\overline{j} + xy^{2}z\overline{k}$, then c	$liv\overline{A}$ 7.	If	a+b+c=0, one root of			
	at (1, -1,	,1) is		a - x	\mathbf{c} \mathbf{b}			
	1. 0			c	$\begin{vmatrix} c & b \\ b - x & a \\ a & c - x \end{vmatrix} = 0 $ is			
	2. –3							
	3. 3				x = 1 x = 2			
					$x = 2$ $x = a^2 + b^2 + c^2$			
	4. 1				$\begin{aligned} x &= a + b + c \\ x &= 0 \end{aligned}$			

If A is a 4×4 matrix. A second order minor 8. of A has its value as 0. Then the rank of A is 1. < 2

- 2. = 2
- 3. >2
- 4. anything
- $(2 \ 0 \ 0)$ Given $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \end{bmatrix}$, then the determinant 9. 0 0 8 value of A^{-1} is
 - 32 1. $\frac{1}{32}$ 2. 3. $\frac{1}{64}$

 - 4. 64
- 10. If $\begin{pmatrix} 3 & 1 \\ 4 & 1 \end{pmatrix} X = \begin{pmatrix} 5 & -1 \\ 2 & 3 \end{pmatrix}$, then 1. $X = \begin{pmatrix} -3 & 4 \\ 14 & 13 \end{pmatrix}$ 2. $X = \begin{pmatrix} 3 & -4 \\ -14 & 13 \end{pmatrix}$ 3. $X = \begin{pmatrix} -3 & 4\\ 14 & -13 \end{pmatrix}$ 4. $X = \begin{pmatrix} -3 & -4 \\ -14 & 13 \end{pmatrix}$
- C R equations for a function $W = P^{(r, \theta) + \ell Q(r, \theta)}$ to be analytic, in 11. function polar form are

1.
$$\frac{\partial P}{\partial r} = \frac{1}{r} \frac{\partial Q}{\partial \theta}, \frac{\partial Q}{\partial r} = \frac{-1}{r} \frac{\partial P}{\partial \theta}$$

2.
$$\frac{\partial Q}{\partial \theta} = \frac{1}{r} \frac{\partial P}{\partial r}, \frac{\partial P}{\partial \theta} = \frac{1}{r} \frac{\partial Q}{\partial r}$$

3.
$$\frac{\partial P}{\partial r} = \frac{-1}{r} \frac{\partial Q}{\partial \theta}, \frac{\partial Q}{\partial r} = \frac{1}{r} \frac{\partial P}{\partial \theta}$$

4.
$$\frac{\partial P}{\partial \theta} = \frac{1}{r} \frac{\partial Q}{\partial r}, \frac{\partial Q}{\partial \theta} = \frac{-1}{r} \frac{\partial P}{\partial r}$$

- 12. If f(z) = u + iv is an analytic function and uand v are harmonic, then u and v will satisfy
 - 1. one dimensional wave equation
 - 2. one dimensional heat equation
 - Laplace equation 3.
 - 4. Poisson equation
- In the analytic **function** $f^{(z)} = u^{+iv}$, the 13. curves $u(x,y) = \sigma_1$ and $v(x,y) = \sigma_2$ are orthogonal if the product of the slopes mand ma are
 - 1. $m_1 m_2 = 0$

$$2. \qquad m_1 m_2 = -\pi$$

3.
$$m_1 m_2 = \frac{-\pi}{2}$$

4.
$$m_1 m_2 = -1$$

- 14. If the imaginary part of the analytic function $f(z) = \omega + i v$ is constant, then
 - 1. 24 is not a constant
 - 2. f(z) is not a complex constant
 - 3, $f^{(z)}$ is equal to zero
 - 4. ²⁴ is a constant
- 15. If $f^{(z)} = P(r, \theta) + Q(r, 8)$ is analytic, then f'(2) is equal to

1.
$$e^{i\theta} \left(\frac{\partial P}{\partial r} + i \frac{\partial Q}{\partial \theta} \right)$$

2. $e^{-i\theta} \left(\frac{\partial P}{\partial r} + i \frac{\partial Q}{\partial \theta} \right)$
3. $e^{-i\theta} \left(\frac{\partial P}{\partial r} + i \frac{\partial Q}{\partial r} \right)$
4. $e^{+i\theta} \left(\frac{\partial P}{\partial r} + i \frac{\partial Q}{\partial r} \right)$

16. The formula for the radius of curvature in cartesian coordinate is

1.
$$\frac{(1+(y')^2)^{1/2}}{y''(x)}$$
2.
$$\frac{(1+(y')^2)^{3/2}}{y''(x)}$$
3.
$$\frac{(1+(y')^2)^{3/2}}{(y'')^2}$$
4.
$$\frac{(1+(y')^2)^{1/2}}{(y''(x))^2}$$

- 17. The stationary point of $f(x, y) = x^2 xy + y^2 2x + y$ is
 - 1. (0,1)
 - 2. . (1, 0)
 - **3**. (- *l*, 0)
 - 4. (**1**,-*l*)

18. $\int x \cos x \, dx$ is

- 1. $x \sin x + \cos x$
- 2. x sin x cos x
- 3. $x\sin x x\cos x$
- 4. $x\sin x + x\cos x$

19. For the following data :

the straight line y = m x + c by the method of least square is

1.
$$y = -2x - 1$$

$$2. \qquad y = x - 1$$

3.
$$y = 1 - 2x$$

 $4. \qquad y = 2x - 1$

The velocity *v* (km/min) of a train which starts from rest, is given at fixed intervals of time *t* (min) a s follows :

t: 2 4 6 8 10 12 14 16 18 20 v: 10 18 25 29 32 20 11 5 2 0

The approximate distance covered by Simpson's 1/3 rule is

- 1. 306.3
- 2. 309.3

3. *310.3*

- 4. 307.3
- 21. Find the cubic polynomial by Newton's forward difference which takes the following
 - $f(x): 1 \ 2 \ 1 \ 10$

x: 0123

- Then f(4) is
- 1. 40
- 2. 41
- 3. 39
- 4. 42

22. The first derivative $\frac{dy}{dx}$ at x = 0 for the given data x: 0 1 2 3f(x): 2 1 2 5

is

- 1. 2
- 2. -2
- 3. –1
- 4. 1

3

23. Error in Simpson's $\frac{1}{3}$ rule is of the order 1. $-h^2$ 2. h^3 3. h^4 4. $\frac{2h^3}{3}$

- 24. A lot consists of ten good articles, four with minor defects and two with major defects. Two articles are chosen from the lot a t random (without replacement). Then the probability that neither of them good is
 - 1. $\frac{5}{2}$
 - 1. $\frac{8}{8}$ 2. $\frac{7}{8}$ 3. $\frac{3}{8}$ 4. $\frac{1}{8}$
- 25. If A, B, C are any three events such that

$$P(A) = P(B) = P(C) = \frac{1}{4};$$

 $P(A \cap B) = P(B \cap C) = 0, \quad P(C \cap A) = \frac{1}{8}.$

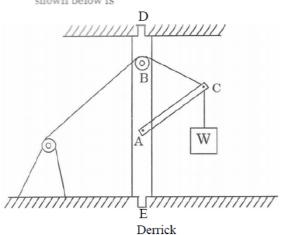
Then the probability that at least one of the events A, B, C occurs, is

- 1. $\frac{1}{32}$
2. $\frac{3}{32}$
3. $\frac{7}{8}$
4. $\frac{5}{8}$
- 26. To establish the mutual independence of n events, the equations needed are
 - 1. $2^n + n + 1$
 - 2. $n^2 + n + 1$
 - 3. $2^n (n+1)$
 - 4. $2^n + 2(n+1)$
- 27. If atleast one child in a family with two children is a boy, then the probability that both children are boys is
 - 1. 3/4
 - 2. 1/3
 - 3. 1/4
 - 4. 1/2
- NG 27

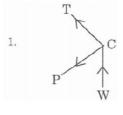
28. A discrete random variable X takes the values $\alpha, \alpha r, \alpha r^2, \dots, \alpha r^{n-1}$ with equal probability. Then Arithmetic Mean (A.M) is 1. $\alpha(1-r^n)$

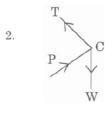
2.
$$\frac{1}{n}\alpha(1-r^n)$$
$$a(1-r^n)$$

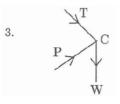
3.
$$\frac{1}{n}$$
 $\frac{1}{1-r}$

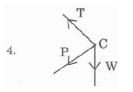

 $4. \qquad \frac{a}{n} \frac{(r^n - 1)}{1 - r}$

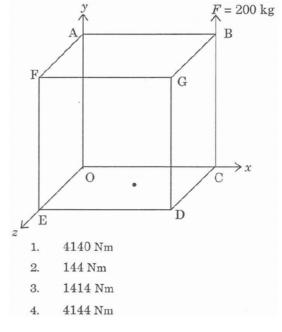
4


PART 02 - BASIC ENGINEERING AND SCIENCE


(Common to all candidates)


Free body diagram of point C of the Derrick 31. shown below is





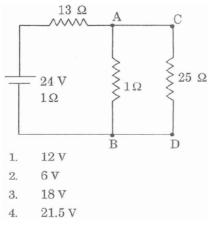
- A 200 kg block is in contact with a plane 32. inclined a t 30'' to the horizontal. A force P, parallel to and acting up the plane, is applied to the body. If the coefficient of static friction is 0.20, the value of P to just cause motion up the plane is
 - 1. 1.35 kg
 - 2.13.5 kg
 - 3. 135 kg
 - 530 kg 4.
- 33. Find the moment of the Force 'F acting along the edge 'CB of a cube of edge 1 m about the centre of the base of the cube OCDE, shown below.

- 34. The motion of a particle is given by $a = 6v^{112}$ where *a* is in m/sec₂ and *v* is in m/sec, when t = 0, v = 0. Find the relation between v and t
 - $v = 9t^2$ 1. 2. t = v/4 $v^2 = 9t$
 - 3.
 - $t = 9v^2$ 4.

- 35. A particle of mass 10 kg is moving along the circumference of a circle of radius 1 0 m. If the tangential velocity of the particle is 5 m/sec, then the kinetic energy gained by the body in **10** rotations is
 - 1. 500 J 2. 0 J
 - 3. 400 J
 - 4. 1250 J
 - 4. 12000
- 36. The packing factor for y iron is
 - 1. **0.34** 2. 0.52
 - 3. 0.68
 - 4. 0.74
- 37. Which one among the following is a thermoset material?
 - 1. Rubber
 - 2. Nylon
 - 3. Urea formaldehyde
 - 4. Teflon
- 38. Which metal among the following would not undergo corrosion?
 - 1. Copper
 - 2. Gold
 - 3. Silver
 - 4. Iron
- 39. Domain structure is exhibited by
 - 1. ferromagnets
 - 2. paramagnets
 - diarnagnets
 - 4. both dia and paramagnets
- **40.** At absolute zero, the probability of occupation of energy levels below the **Fermi** energy level, by electrons, is
 - 1. 1 1/2
 - 2. 3. 1/
 - 3. 1/3
 - 4. 1/4

41. A water column of volume 6.5 litres is subjected to a direct pressure of

 1.8×10^6 N/m². Determine the change in

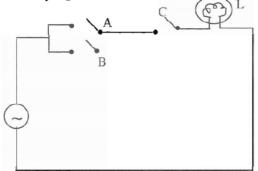

volume of water column if the bulk modulus of water is taken as 2×10^9 N/mm² 1. 5.85×10^{-6} m³

- . . .
- 2. $58.5 \times 10^{-3} \text{ m}^3$
- 3. $2.05 \times 10^{-4} \text{ m}^3$
- 4. $1.85 \times 10^{-5} \text{ m}^3$
- 42. Density index of a material is
 - 1. greater than one
 - 2. less than one
 - 3. equal to one
 - 4. indeterminate
- The constituent of cement that imparts quick setting quality to cement is
 - Magnesia
 - 2. Iron oxide
 - 3. Alumina
 - 4. Silica
- A surveyor's mark cut on a stone or rock or any reference point to indicate a level in a levelling survey is called
 - 1. reduced level
 - 2. change point
 - 3. levelling mark
 - 4. bench mark
- 45. According to the United States Bureau of soil classification, the soil is designated as 'coarse clay' if the particle size varies from
 - 1. 0.0001 mm to 0.002 mm
 - 2. 0.02 mm to 0.06 mm
 - 3. 0.2 mm to 0.6 mm
 - 4. 0.6 mm to 2 mm
- 6

47 Two capacitors A and B are placed in series. Capacitors $C_A = 100 \,\mu \text{F}$ and $C_{\mu} = 50 \,\mu \text{F}$. The maximum energy stored in

the circuit when 240 V, 50 Hz supply is applied to the circuit is

- 1. 19.2 J
- 2. 1.92 J
- **3**. 192 J
- 4. 12.9 J
- 47. With reference to the network shown below, by applying Thevenin's theorem, find the equivalent voltage of the network when viewed from the terminals CD


48. "In a Delta/Star transformation of meshes, it

must be remembered that the resistance of each arm of the star is given by the of the resistance of the two delta sides that meet at its ends divided by the resistances." of the three delta

- 1. product, product
- 2. sum, product
- product, sum
- sum, sum
- 49. An alternating voltage of (8+j6)V is applied to a series a.c. circuit and the current passing is (2+j5)A. The impedance of the circuit is
 - 1. <u>8.6</u> Ω
 - 18.6 Ω
 - 1.68 Ω
 - 1.86 Ω

- 50. A moving coil ammeter is wound with 40 turns and gives full scale deflection with 5 A. How many turns would be required on the same bobbin to give full scale deflection with 20 A?
 - 1. 10
 - 2. 40
 - **3.** 12
 - 4. 21
- 51. The percentage of carbon in eutectoid steel is
 - 1. 0.8
 - 2. 0.4
 - **3.** 0.02
 - 4. 1.2
- 52. Which one of the following is not using electron as a source of energy?
 - Solar cell
 - 2. MHD generator
 - 3. Fuel cell
 - Atomic power plant
- 53. Temporary metal forming process is
 - 1. Welding
 - 2. Brazil
 - 3. Mechanical bonding
 - 4. Soldering
- 54. Under isobaric conditions, the Gibb's phase rule takes the form
 - 1. F = C P + 2
 - 2. F = C P + 1
 - 3. F = C P + 3
 - 4. $\mathbf{F} = \mathbf{C} \mathbf{P}$
- 55. Which one of the following metals is more ductile?
 - 1.. Copper
 - 2. Silver
 - 3. Gold
 - 4. Nickel
- 7

 Express the following switching circuit in binary logic notation

- 1. L = (A C + BC)
- $2. \qquad L = (A+B) \cdot C$
- $3. \qquad L = (A+B)+C$
- $4. \qquad L = A + (B + C)$
- 57. Applying DeMorgan's theorem find the equivalent of $\overline{\langle x \rangle} = \overline{\langle y \rangle}$
 - 1. $(x'+y') \in x'$
 - 2. $\overline{(x'+x')}, y'$
 - 3. (y'+x')+z'
 - 4. $x' \cdot (y' + z')$
- 58. LAN stands for
 - 1. Local Access Network
 - 2. Local Area Network
 - 3. Link Access Network
 - 4. Listed Area Network
- 59. An electronic semiconductor device that is

fabricated with permanently stored information, which cannot be erased is called

- 1. Random Access Memory
- 2. Read Only Memory
- 3. Memory Data Register
- 4. Memory Address Register
- 60. Which of the following are the system directories in 7 7
 - 1. $_7$ bin, etc, lib, tmp $_7$
 - 2. Jocal, usr, dev, bjn
 - 3. _z bash, etc, lib, tmp
 - 4. sys, dev, bin, usr

- 61. If \mathcal{O} is the angle between the vectors $\overline{\alpha}$ and $\overline{\mathcal{O}}$ such that $|\overline{\alpha} \times \overline{\mathcal{O}}| = \sqrt{10}$ and $\overline{\alpha} \cdot \overline{\mathcal{O}} = \sqrt{30}$, then the value of $\cos \mathcal{O}$ is
 - 1. 1/32. 1/23. $\frac{2}{\sqrt{3}}$ 4. $\frac{\sqrt{3}}{2}$
- 62. If $a = \sqrt{2i}$, then which of the following is true?
 - $= (\pm \sqrt{2})i$
 - 2. a + i = 1
 - 3. a i = 1
 - 4. a = (-&)i
- 63. The value of the determinant given below is
 - $\mathbf{A} = \begin{vmatrix} \alpha^2 & a^3 & \alpha^4 \\ \alpha^3 & a^4 & \alpha^5 \\ a^4 & \alpha^6 & \alpha^7 \end{vmatrix}$ 1. a^9 2. α^{13} 3. $2\alpha^2$ 4. 0
- 64. Which of the following points lies on the circle with centre (3, 2) and radius 3 units?
 - 1. (3,1)
 - 2. (1, 3)
 - **3.** (-1,**3**)
 - 4. (-3,1)
- 65. A die and a coin are thrown together. The probability of obtaining a prime number on the die and tail on the coin is
 - $\begin{array}{ccc} 1 & 1/2 \\ 2 & (1/2)^2 \\ 3 & (1/2)^3 \end{array}$
 - 4. $(1/2)^4$

EXAMPLE 1 Could connected in series have resistances 1000Ω and 300Ω and temperature coefficient of 0.001 and 0.004 respectively a t **20°** C. The resultant of the combination at 20° C is

- 1. 954 Ω
- 2. 549 Ω
- **3**. 1094 Ω
- 4. 850 Ω
- 67. A boat is at rest under the action of three forces, two of which are $F_1 = 4i$ and $F_2 = 6j$. Then the *z*-component of the third force is
 - 1. 4 units
 - 2. 6 units
 - 0 units
 - 4. 10 units
- 68. A body that absorbs all the radiation falling on it is called a
 - good absorber
 - 2. perfect black body
 - 3. black body
 - 4. good emitter
- **69.** Quantum nature of light is not supported by the phenomenon of
 - 1. Compton effect
 - 2. Photoelectric emission
 - 3. Emission or absorption spectrum
 - 4. Diffraction of light
- 70. Current carriers in an electrolyte are
 - 1. electrons and negative ions
 - 2. electrons and positive ions
 - 3. positive and negative ions
 - 4. electrons and ions

- 71. A real gas would approach the behaviour of an ideal gas a t
 - 1. low temperature and high pressure
 - 2. low temperature and low pressure
 - 3. high temperature and low pressure
 - 4. high temperature and high pressure
- 72. Boron trifluoride (BF₃) will act as
 - 1. a base
 - 2. an acid
 - 3. both as a base and an acid
 - 4. neither a base nor an acid
- 73. An electric current is passed through an aqueous solution given below. Which one shall decompose?
 - 1. Urea
 - 2. Silver Nitrate
 - 3. Ethyl alcohol
 - 4. Glucose
- 74. The element of highest electronegativity is
 - 1. Flourine
 - 2. Chlorine
 - 3. Oxygen
 - 4. Caesium
- 75. Which one of the following involves a polar bond?
 - 1. Cl -- Cl
 - 2. 0 0
 - 3. Br-Br
 - 4. H- Cl

9

PART 05 - ELECTRICAL, ELECTRONICS, COMMUNICATION

ENGINEERING (Answer ALL questions)

- (Answer ALL questio
- 76. How much energy is stored by a 100 inductance with a current of 1 A?
 - 1. 100 J
 - 2. 1J
 - 3. 0.05 J
 - 4. 0.01 J
- 77. If a network contains B branches and N nodes then the number of mesh current equations would be
 - 2.

B – N – 1

4. (B+N)-1

78.

- the current
- 1. leads the applied voltage
- 2. lags behind the applied voltage
- 3. is in phase with the voltage
- 4. is in quadrature with the voltage
- 79. In a certain series RC circuit, the true power is 2W and the reactive power is **3.5** VAR. What is the apparent power?
 - 1. 3.5 VA
 - 2. 2VA
 - 3. 4.03 VA
 - 4. 3VA
- 80. A sine wave voltage is applied across an inductor when the frequency of voltage is increased, the current
 - 1. increases
 - 2. decreases
 - 3. remains the same
 - 4. is zero

NG 27

81. A shunt generator running at has generated as 200 V. If the speed increases to 1200 rpm, the generated emf will be nearly

- 1. 150 V
- 2. 175 V
- 3. 240 V
- 4. 290V
- 82. In a generator in case the resistance of the field winding is increased then output voltage will
 - increase
 - 2. decrease
 - 3. remain unaffected
 - 4. fluctuate
- 83. D.C. motors are widely used in
 - 1. Pump sets
 - 2. Air compressors
 - 3. Electric traction
 - 4. Machine shops
- 84. The starting winding of a single-phase motor is placed in
 - 1. armature
 - 2. field
 - 3. rotor
 - 4. stator
- 85. An over-excited synchronous motor takes
 - 1. leading current
 - 2. lagging current
 - 3. both (1)and (2)
 - 4. in phase current

18

- 36. In open loop
- the control action
- 1. depends on the size of the system
- 2. depends on system variables
- 3. depends on the input signal
- 4. is independent of the output
- 87. A controller is essentially a
 - 1. Sensor
 - 2. Clipper
 - 3. Comparator
 - 4. Amplifier
- 88. A signal flow graph is a
 - 1. topological representation of a set of differential equations
 - 2. polar graph
 - 3. log log graph
 - special type of graph to analyse modern control systems
- 89. When the gain margin is positive and the phase margin is negative, the system is
 - 1. stable
 - 2. unstable
 - stable or unstable depending on the system
 - 4. undeterministic
- 90. The effect of adding poles and zeros can be determined quickly by which of the following?
 - 1. Root locus
 - 2. Nyquist plot
 - 3. Bode plot
 - Nicholar chart

- 91. A Norton's equivalent is
 - 1. parallel circuit
 - 2. series circuit
 - 3. series-parallel circuit
 - 4. none of the above
- 92. A resistor of 5 ohms is connected in one branch of a complex network. The current in this branch is 5 A. If this 5 resistor is replaced by 10 resistor the current in this branch will be
 - 1.
 - 2.
 - 3. 5 A
 - 4. less than 5 A

A

- 93. To determine the polarity of the voltage drop across a resistor, it is necessary to know the
 - value of the resistor
 - 2. value of current through the resistor
 - 3. direction of current through the resistor
 - 4. power consumed by the resistor
- 94. In a network the number of tree branches
 - 1. is equal to the number of links
 - 2. cannot be equal to number of links
 - 3. is twice the number of links
 - 4. has no relation with the number of link branches

- 95. For a voltage source
 - 1. the source emf and terminal voltage are equal
 - terminal voltage is always lower than source emf
 - terminal voltage cannot be higher than source emf
 - 4. terminal voltage is zero
- 96. Kirchoffs voltage law states that the
 - total voltage drop in a series circuit is always finite
 - sum of emf and voltage drops in a closed mesh is zero
 - 3. sum of emfs in a series circuit is zero
 - sum of emf and voltage drops in a closed mesh is not zero
- 97. In a thyristor, the magnitude of anode current will
 - 1. increase if gate current is increased
 - 2. decrease if gate current is decreased
 - 3. increase if gate current is decreased
 - not change with variation in gate current
- 98. For an SCR, dildt protection is achieved through the use of
 - 1. R in series with SCR
 - 2. L in series with SCR
 - 3. RL in series with SCR
 - 4. RLC in series with SCR

NG 27

- 99. Inverter gain is given by the ratio
 - 1. dc output input voltage
 - 2. ac output input voltage
 - 3. dc output input voltage
 - 4. ac output voltageldc input voltage
- 100. A diode works on the principle of
 - 1. tunnelling of charge carriers across the junction
 - 2. thermionic emission
 - diffusion of charge carriers across the junction
 - hoping of charge carriers across the junction
- 101. The major application of chopper drive is in
 - 1. traction
 - 2. computers
 - 3. heating furnishes
 - miniature motors
- 102. When a thyristor gets turned on, the gate drive
 - should not be removed or it will turn off the SCR

may or may not be removed

- 3. should be removed
- should be removed in order to avoid increased losses and higher function temperature
- 103. Computer cannot do anything without a
 - 1. chip
 - 2. memory
 - output device
 - 4. program

20

- 104. The first computer made available for use was
 - 1. Mark-I
 - 2. ENIAC
 - 3.
 - 4. UNIVAC
- 105. When did Intel announce its 16-bit 80286 chip?
 - 1. 1980
 - 2. 1982
 - 3. 1984
 - 4. 1986
- 106. How many bits can be stored in the 8 K RAM?
 - 1. 8000
 - 2. 8192
 - 3. 4000
 - 4. 4096
- 107. The larger the RAM of a computer, the faster its processing speed is since it eliminates the
 - 1. need of ROM
 - 2. need for external memory
 - 3. frequent disk

need for wider data path

- 108. Which of the following types of transducers can be used for measuring the angular position?
 - (a) Circular potentiometer
 - LVDT
 - E-Pick off
 - Synchro

Select the correct answer using the codes given below :

1. and (d)

- 2. (a) and
- 3. and (d)
- 4. and

- 109. The most suitable thermocouple to be used for measuring temperature in the range of C to 1500" C is
 - 1. Chromel–Constantan
 - 2. Iron-Constantan
 - 3.

Platinum-Rhodium

- 110. LVDT is a
 - 1. displacement transducer
 - 2. velocity transducer
 - acceleration transducer
 pressure transducer
- 111. In a strain measuring equipment using a resistance strain gauge the output quantity is
 - 1. resistance
 - 2. voltage
 - 3. current
 - 4. impedance
- 112. If the temperature increases by C, the resistivity of a thermistor is likely to become
 - 1. one half of initial value
 - 2. one fiftieth of initial value
 - 3. twice the initial value
 - 4. no change
- 113. The purpose of duplexer is
 - 1. to convert TDM to FDM
 - 2. to provide same antenna both for transmission and reception
 - 3. to convert pulsed transmission to transmission
 - 4. both (1)and

114.	In FM transmission, amplitude of the modulating signal determines	118.	Generally the aircraft electrical system us supply frequency of
	 rate of frequency variations amount of frequency shift 		1.
	3. total balance of transmission		2. 60 Hz
	4. distance of broadcast		3. 400 Hz
115.	The highest harmonic generated in human voice is		4. 115 Hz
	1 kHz 2.	119.	In GPS Navigation, there can be integration between
	 3kHz 4. 		1. GPS and INS
116.	If the reflection coefficient of a line is zero, the line is		2. GPS and LORAN C
	1. Infinite line		3. GPS and ILS
	2. Open-circuited		4. GPS and DME
	3. Short-circuited	120.	Mach Number is defined as the ratio betwee
	4. Very short line		True air speed and speed of the sound at
117.	The receiving antenna most used for TV broadcasting in the UHF band is		1. sea level
	1. turnstile antenna		2. any altitude

- dipole antenna
- 3. antenna
- 4. antenna

1000

- een
 - any
 - 3. a particular altitude
 - 4. all altitudes

ANNA UNIVERSITY : CHENNAI 600 025

OFFICE OF THE ADDITIONAL CONTROLLER OF EXAMINATIONS

(UNIVERSITY DEPARTMENTS)

GUIDELINES FOR AWARDING PUNISHMENTS TO MALPRACTICE CASES OF

STUDENTS

	GIGDENIG	
Sl.No.	Nature of Malpractice	Maximum Punishment
1.	Appeal by the candidate in the answer script to show	
	mercy by way of awarding more than deserving marks	
2.	The candidate writing his/her name in the answer script.	
3.	The candidate writing his/her registration number/college	
	name in places other than specified in the answer script.	
4.	Any special marking in the answer script by the	
	candidate.	
5.	The candidate communicating with neighbouring	I Fine of Rs.1000/- per subject.
	candidate orally or non-verbally; the candidate causing	
	suspicious movement of his/her body.	
6.	Irrelevant writing by the candidate in the answer script.	
7.	The candidate either possessing the question paper of	
	another candidate or passing his question paper to	
	another candidate with the question paper containing no	
	additional writing on it.	
8.	The candidate possessing cell phones/programmable	
0.	calculator(s)/any other electronic storage device(s)	II Fine of Rs.2000/- per subject.
	containing no incriminating materials.	n The of Rs.2000/- per subject.
9.	The candidate facilitating the other candidate(s) to copy	IIIA. – Invalidating the examination of the
2.	from his/her answer script.	particular subject written by the candidate.
	nom ms/net answer script.	IIIA, IIIB or IIIC
10.	The candidate possessing any incriminating material(s)	IIIA, III of IIIC IIIA – If the quantum of the incriminating
	(whether used or not). For example:- Written or printed	material is less than that could normally be
	materials, bits of papers containing written information,	printed in two lines of A5 size paper, then
	writings on scale, calculator, handkerchief, dress, part of	
	the body, Hall Ticket, etc.	punishment is restricted to the subject
	•	concerned only.
11.	The candidate possessing cell phone(s)/programmable	IIIB – If the quantum is equal to or more than
	calculator(s)/any other electronic storage device(s) and	that could normally be printed in two lines and
	containing incriminating materials (whether used or not)	less than that could normally be printed in the
12.	The candidate possessing the question paper of another	full page of the A5 size paper then the
12.	candidate with additional writing on it.	punishment is invalidating the examination of
	candidate with additional writing on it.	the subject concerned and further the candidate
13.	The candidate passing his/her question paper to another	is not considered for any moderation and
	candidate with additional writing on it.	revaluation in the current semester for any
14	The second data manufaction of the second state has made	subject (including arrear subjects)
14.	The candidate passing incriminating materials brought	IIIC - When the quantum is equal to or more
	into the examination hall in any medium (hard/soft) to	than that could normally be printed in full page
	other candidate(s).	of A5 size paper, then the punishment would be
15.	The candidate copying from neighbouring candidate.	invalidating the examinations of the subject
		concerned and all the theory and the practical
		subjects of the current semester registered by
		the candidate. Further the candidate is not
		considered for revaluation of answer scripts of
		the arrear subjects.
		If the candidate has registered for the arrear
		subjects only, invalidating the examinations of
		all the arrear-subjects registered by the
		candidate. The punishment does not include
		project work and the subjects with 100%
		internal evaluation.
		Contd 2

Contd 2..

Sl.No.	Nature of Malpractice	Maximum Punishment	
16.	Vulgar/offensive writings by the candidate in the answer script.	IV. – Invalidating the examinations of all the theory and practical subjects of the current semester and all the arrears subjects registered by the candidate.	
17.	The candidate possessing the answer script of another candidate.		
18.	The candidate passing his/her answer script to another candidate.		
19.	Appeal by the candidate in the answer script coupled with a promise of any form of consideration.		
20.	The candidate misbehaving in the examination hall.	<u>Va. – For candidates who have not</u> completed the programme:	
21	Involved in any one or more of the malpractices of serial no.10 to 19 for the second or subsequent times.	The examinations of all the theory and the practical subjects of the current semester and all the arrear subjects registered by the candidate are invalidated. Further, the candidate is debarred from continuing his/her studies for one year i.e for two subsequent semesters. However, the student is permitted to appear for the examination in all the arrear subjects upto the last semester during the debarred period.Vb For candidates who have completed the programme:The examinations of all the arrear subjects registered by the candidate are invalidated. Further, the candidate are invalidated. Further, the candidate is prevented from writing the examinations of the arrear subjects for the two subsequent semesters.	
22.	Cases of Impersonation.	For both the impersonator and the bonafide student for whom the impersonation was done. VI. – The examinations of all the subjects registered by the candidate are invalidated and further the student is debarred from continuing his/her studies and debarred from writing the examinations permanently. He/She is not eligible for any further admission to any programme of the University.	

Additional Controller of Examinations University Departments

K.L.N. COLLEGE OF ENGINEERING, Pottapalayam 630612 (11 km from Madurai City)								
STUDENTS LEAVE APPLICATION FORM								
Department of Electrical and Electronics Engineering								
Name of the Student	:	Date:						
Roll No.:	: Sem / Yr. / Sec.							
No. of days, leave, already availed :								
%of Attendance as on	: is							
Date & Day	:							
Reason for Leave	:							
Signature of the Student Guardian	Name, Mobile No. & Signature of Parent /							
Recommended / Not Recommended								
Class Tutor	Class Coordinator	HOD/EEE						

TO The Principal KLNCE Pottapalayam Sub: R	equisition for Bonafide Certificate	Date				
Dear Sir,						
	Kindly issue Bonafide Certificate	to me				
Purpose	:					
Venue	:					
Name	:					
Father's Name :						
Roll No.	:					
Department	:					
Year & Sem	:					
Thanking You,						
Date :	٢	ours Sincerely				
Station :						
Recommende	d by :					
Received	:					
K.L.N.C.E./EEE/HAND BOOK/2015-2016/EVEN/VI SEM/RJPP 118						